Return to search

Modelos para análise de dados não-normais multivariados longitudinais

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Estatística, 2013. / Submitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2016-01-12T15:24:17Z
No. of bitstreams: 1
2013_RubemKalpperCeratti.pdf: 1830693 bytes, checksum: 5cc2b460e956662ebc74cdfd9b67bd15 (MD5) / Approved for entry into archive by Patrícia Nunes da Silva(patricia@bce.unb.br) on 2016-01-12T15:52:07Z (GMT) No. of bitstreams: 1
2013_RubemKalpperCeratti.pdf: 1830693 bytes, checksum: 5cc2b460e956662ebc74cdfd9b67bd15 (MD5) / Made available in DSpace on 2016-01-12T15:52:07Z (GMT). No. of bitstreams: 1
2013_RubemKalpperCeratti.pdf: 1830693 bytes, checksum: 5cc2b460e956662ebc74cdfd9b67bd15 (MD5) / Neste trabalho são abordados modelos lineares generalizados de efeitos mistos para análise de dados longitudinais multivariados, no tratamento de dados em que se assume a distribuição Poisson composta, que tem suporte em $[0,+\infty)$ e é um caso particular da família Tweedie de distribuições, também pertencente à família exponencial de dispersão. No ajuste dos modelos mistos multivariados para a distribuição Poisson composta, utiliza-se uma abordagem de pseudo-verossimilhança, estimando modelos par-a-par e reduzindo o tempo computacional. Como aplicação, analisa-se um conjunto de dados provenientes de um experimento agronômico no qual avaliam-se os efeitos de tratamentos, ao longo do tempo, no perfil de 25 compostos químicos de plantas de algodão. ______________________________________________________________________________ ABSTRACT / This work presents generalized linear mixed effects models as a framework to the analysis of longitudinal multivariate data for which the underlying distribution is assumed to follow a compound Poisson distribution, whose support lies in $[0,+\infty)$, and is a particular case of the Tweedie family of distributions, and, also, belongs to the exponential dispersion family. In order to fit multivariate mixed models to the compound Poisson distribution, a pseudo-likelihood approach is used, fitting pairwise models and reducing computational time. As an application, agronomic experiment data is analyzed, estimating the effects of 5 treatments, over different time periods, on the profile of 25 organic compounds of cotton plants.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unb.br:10482/19152
Date08 July 2013
CreatorsCeratti, Rubem Kaipper
ContributorsVieira, Afrânio Márcio Corrêa
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UnB, instname:Universidade de Brasília, instacron:UNB
RightsA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data., info:eu-repo/semantics/openAccess

Page generated in 0.002 seconds