Seja (X; t) um espaço topológico e seja F a família de todos os subconjuntos de X que satisfazem uma propriedade topológica dada P (invariante por homeomorfismos). Se acrescentarmos abertos novos à topologia e se F\' é a família de todos os subconjuntos do novo espaço que satisfazem a propriedade P, podemos ter que F ≠ F\'. Se isto sempre acontece, dizemos que o espaço (X; t) é maximal com respeito à família F. Neste trabalho estudaremos os espaços topológicos maximais com respeito a algumas famílias de subconjuntos: discretos, compactos, densos, conexos e das sequências convergentes. / Let (X; t) be a topological space and let F be the family of all subsets of X that satisfy a given topological property P (invariant under homeomorphisms). If we add new open sets to the topology and if F\' is the family of all subsets of the new space which satisfy the property P, we can have F ≠ F\'. If this is always the case, we say that (X; t) is maximal with respect to the family F. We show here some characterizations of maximal spaces with respect to the family of some of its subsets: compacts, dense, discrete and convergent sequences.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-08072016-141640 |
Date | 18 March 2016 |
Creators | Mercado, Henry José Gullo |
Contributors | Aurichi, Leandro Fiorini |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0021 seconds