"Fire tests involving heavy goods vehicles (HGVs) in a road tunnel with forced ventilation in Norway, conducted by SP, demonstrated a pulsation phenomena that is similar to oscillating flames and thermo-acoustic instabilities previously observed in vitiated compartments and resonant systems that meet the Rayleigh criterion, respectively. This current study investigates whether the causal phenomena can be determined using either a simple, one-dimensional fluid dynamics model or a computation fluid dynamics program. It is assumed that the leading cause for pulsation is a locally under-ventilated fire. Theoretical analysis shows that this assumption is valid and how such conditions can cause the flow field to change. A simple model is developed for a tunnel fire with forced, longitudinal ventilation. The results qualitatively represent the test data and support the assumption of a locally vitiated fire. A more sophisticated analysis, involving the Fire Dynamics Simulator (FDS) Version 4.0, provides similar results. Although FDS calibration, using similar experiment data from the Memorial Tunnel Ventilation Test Program, demonstrates model limitations in predicting smoke layers near the solid boundaries under forced flow field, the qualitative results from both models indicates that pulsation in large tunnel fires under forced ventilation conditions results from poor mixing of the bulk flow in the near field of the fire."
Identifer | oai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-theses-2051 |
Date | 05 October 2006 |
Creators | Kim, Mihyun Esther |
Contributors | John P. Woycheese, Advisor, , , N. A. Dembsey |
Publisher | Digital WPI |
Source Sets | Worcester Polytechnic Institute |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses (All Theses, All Years) |
Page generated in 0.0019 seconds