This thesis investigates protein markers linked to pulmonary embolism risk using proteomics and statistical methods, employing unsupervised and supervised machine learning techniques. The research analyzes existing datasets, identifies significant features, and observes gender differences through MANOVA. Principal Component Analysis reduces variables from 378 to 59, and Random Forest achieves 70% accuracy. These findings contribute to our understanding of pulmonary embolism and may lead to diagnostic biomarkers. MANOVA reveals significant gender differences, and applying proteomics holds promise for clinical practice and research.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-5864 |
Date | 01 December 2023 |
Creators | Awuah, Yaa Amankwah |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Rights | Copyright by the authors. |
Page generated in 0.0019 seconds