Return to search

Customer Load Profiling and Aggregation

Power industry restructuring has created many opportunities for customers to reduce their electricity bills. In order to facilitate the retail choice in a competitive power market, the knowledge of hourly load shape by customer class is necessary. Requiring a meter as a prerequisite for lower voltage customers to choose a power supplier is not considered practical at the present time. In order to be used by Energy Service Provider (ESP) to assign customers to specific load profiles with certainty factors, a technique which bases on load research and customers¡¦ monthly energy usage data for a preliminary screening of customer load profiles is required.
Distribution systems supply electricity to different mixtures of customers, due to lack of field measurements, load point data used in distribution network studies have various degrees of uncertainties. In order to take the expected uncertainties in the demand into account, many previous methods have used fuzzy load models in their studies. However, the issue of deriving these models has not been discussed. To address this issue, an approach for building these fuzzy load models is needed.
Load aggregation allows customers to purchase electricity at a lower price. In some contracts, load factor is considered as one critical aspect of aggregation. To facilitate a better load aggregation in distribution networks, feeder reconfiguration could be used to improve the load factor in a distribution subsystem.
To solve the aforementioned problems, two data mining techniques, namely, the fuzzy c-means (FCM) method and an Artificial Neural Network (ANN) based pattern recognition technique, are proposed for load profiling and customer class assignment. A variant to the previous load profiling technique, customer hourly load distributions obtained from load research can be converted to fuzzy membership functions based on a possibility¡Vprobability consistency principle. With the customer class fuzzy load profiles, customer monthly power consumption and feeder load measurements, hourly loads of each distribution transformer on the feeder can be estimated and used in distribution network analysis. After feeder models are established, feeder reconfiguration based on binary particle swarm optimization (BPSO) technique is used to improve feeder load factors. Test results based on several simple sample networks have shown that the proposed feeder reconfiguration method could improve customers¡¦ position for a good bargain in electricity service.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0628102-172036
Date28 June 2002
CreatorsChang, Rung-Fang
ContributorsYing-Yi Hong, Ching-Tsai Pan, Nan-Ming Chen, Chao-Shun Chen, Ching-Lian Huang, shi-Lin Chen, Chan-Nan Lu
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0628102-172036
Rightsoff_campus_withheld, Copyright information available at source archive

Page generated in 0.0028 seconds