Return to search

Broken Lefschetz fibrations on smooth four-manifolds

It is known that an arbitrary smooth, oriented four-manifold admits the structure of what is called a broken Lefschetz fibration. Given a broken Lefschetz fibration, there are certain modifications, realized as homotopies of the fibration map, that enable one to construct infinitely many distinct fibrations of the same manifold. The aim of this paper is to prove that these modifications are sufficient to obtain every broken Lefschetz fibration in a given homotopy class of smooth maps. One notable application is that adding an additional projection move generates all broken Lefschetz fibrations, regardless of homotopy class. The paper ends with further applications and open problems. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2010-05-841
Date12 October 2010
CreatorsWilliams, Jonathan Dunklin
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf

Page generated in 0.0017 seconds