Au cours des dernières années, le développement de matériaux composites avancés fabriqués à partir de fibres naturelles a été principalement axé sur l'obtention de matériaux à haut module et à haute résistance. Cependant, la résistance élevée n'est pas suffisante, car certains des matériaux possèdent une nature fragile (l'allongement à la rupture est faible), et l'un des critères de performance les plus importants devrait être la capacité à absorber l'énergie et à résister aux chocs. La manière dont un matériau composite se déforme et subit des endommagements dépend à la fois des propriétés chimiques et mécaniques de trois constituants de base : les fibres, la matrice et une fine région d'interphase (parfois appelée interface) chargée d'assurer le lien entre matrice et fibre. En raison de leurs propriétés uniques et de leur nature abondante, les fibres à base de cellulose émergent comme un choix privilégié pour les communautés scientifiques, techniques et commerciales qui recherchaient des matériaux durables dans diverses applications. Bien que ces fibres possèdent plusieurs avantages par rapport aux charges synthétiques, l'adhérence entre la fibre et la matrice, la sensibilité à l'humidité et les propriétés au feu restent des domaines difficiles à traiter. Dans ce contexte, une nouvelle technique basée sur la méthode par pulvérisation-séchage-durcissement a permis de fabriquer un revêtement sol-gel hydrophobe sur la surface de la fibre de coco lignocellulosique. La modification de surface des fibres de coco a été effectuée à l'aide d'un plasma oxygène à basse pression suivi d'un enduit sol-gel polymérisable à sec avec un siloxane à fonction fluoroalkyle (FAS). Le prétraitement par plasma a augmenté la concentration effective du réseau FAS sur les fibres de fibre de coco dans le but de créer la surface extrêmement hydrophobe. L'efficacité du traitement plasma et du sol gel FAS sur fibre de coco a été étudiée en utilisant différentes techniques de caractérisation telles que l'analyse de l'angle de contact, l'absorption d'eau, la microscopie électronique à balayage, la microscopie à force atomique et la spectroscopie photoélectronique. Les propriétés mécaniques, morphologiques, rhéologiques et thermiques de différentes formulations de mélanges PP/EPDM ont été étudiées pour trouver la composition optimale du mélange pour la préparation de composites. Les composites résultants à base de polypropylène, d'EPDM et de fibre de coco possèdent des propriétés de résistance aux chocs élevées et des propriétés de traction et de flexion comparables. Les propriétés mécaniques, morphologiques, rhéologiques et thermiques des composites PP/EPDM/Coir ont été étudiées en détail pour examiner la stabilité des composites. / In recent years, the development of advanced high performance composite materials made from natural fibers was mainly focussed on achieving high modulus and strength materials. However, the high strength is not sufficient, as some of the materials possess brittle nature (the overall elongation to fracture is small), and one of the more important performance criterion should be the ability to absorb energy and resist impact loadings. The manner in which a composite material deforms and subjected to fractures depends upon both the chemical and mechanical properties of three basic constituents: the fibers, the matrix and a fine interphase region (sometimes referred to as the interface) responsible for assuring the bond between the matrix and fiber. Due to its unique properties and abundant in nature, lignocellulose based fibers are emerging as a preferred choice for scientific, engineering and commercial communities who were looking for sustainable materials in various applications. Though these fibers possess several advantages over synthetic fillers, adhesion between the fiber and matrix, moisture repellence, flame retardant properties etc are still challenging areas to be addressed. In this context a novel technique based on spray-dry- cure method to establish a hydrophobic sol-gel coating on the lignocellulosic coir fiber surface. The surface modification of lignocellulosic coir fibers was done with the use of low-pressure oxygen plasma, followed by the application of a spray-dry-cure sol–gel coating with the water and oil repellent organic–inorganic hybrid precursor fluoroalkyl-functional siloxane (FAS), with the aim of creating the extremely hydrophobic coir fiber surface. The plasma pre-treatment increased the effective concentration of the FAS network on the lignocellulosic coir fibers. The effectiveness of plasma treatment and FAS sol gel coating on the coir fiber was studied using different characterisation techniques such as contact angle analysis, water absorption studies, scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. The mechanical, morphological, rheological and thermal properties of different PP/EPDM blend formulations were carried out to find out optimum blend composition for composite preparation. The resulting composites based on polypropylene, EPDM and coir possess high impact strength properties and comparable tensile and flexural properties. The mechanical, morphological, rheological and thermal properties of PP/EPDM/Coir composites were studied in detail to examine the stability of the composites.
Identifer | oai:union.ndltd.org:theses.fr/2018LORIS495 |
Date | 29 June 2018 |
Creators | Kosappallyillom Muraleedharan, Praveen |
Contributors | Lorient, Mahatma Gandhi University, Grohens, Yves, Sabu, Thomas |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.009 seconds