O objetivo deste trabalho é apresentar um novo método para a remoção do ruído Poisson em imagens de mamografia digital adquiridas com baixa dosagem de radiação. Sabe-se que a mamografia por raios X é o exame mais eficiente para a detecção precoce do câncer de mama, aumentando consideravelmente as chances de cura da doença. No entanto, a radiação absorvida pela paciente durante o exame ainda é um problema a ser tratado. Estudos indicam que a exposição à radiação pode induzir a formação do câncer em algumas mulheres radiografadas. Apesar desse número ser significativamente baixo em relação ao número de mulheres que são salvas pelo exame, existe a necessidade do desenvolvimento de meios que viabilizem a diminuição da dose de radiação empregada. No entanto, uma redução na dose de radiação piora a qualidade da imagem pela diminuição da relação sinal-ruído, prejudicando o diagnóstico médico e a detecção precoce da doença. Nesse sentido, a proposta deste trabalho é apresentar um método para a filtragem do ruído Poisson que é adicionado às das imagens mamográficas quando adquiridas com baixa dosagem de radiação, fazendo com que ela apresente qualidade equivalente àquela adquirida com a dose padrão de radiação. O algoritmo proposto foi desenvolvido baseado em adaptações de algoritmos bem estabelecidos na literatura, como a filtragem no domínio Wavelet, aqui usando o Shrink-thresholding (WTST), e o Block-matching and 3D Filtering (BM3D). Os resultados obtidos com imagens mamográficas adquiridas com phantom e também imagens clínicas, mostraram que o método proposto é capaz de filtrar o ruído adicional incorporado nas imagens sem perda aparente de informação. / The aim of this work is to present a novel method for removing the Poisson noise in digital mammography images acquired with reduced radiation dose. It is known that the X-ray mammography is the most effective exam for early detection of breast cancer, greatly increasing the chances of healing the disease. However, the radiation absorbed by the patient during the exam is still a problem to be treated. Some studies showed that mammography can induce breast cancer in a few women. Although this number is significantly low compared to the number of women who are saved by the exam, it is important to develop methods to enable the reduction of the radiation dose used in the exam. However, dose reduction led to a decrease in image quality by means of the signal to noise ratio, impairing medical diagnosis and the early detection of the disease. In this sense, the purpose of this study is to propose a new method to reduce Poisson noise in mammographic images acquired with low radiation dose, in order to achive the same quality as those acquired with the standard dose. The method is based on well established algorithms in the literature as the filtering in Wavelet domain, here using Shrink-thresholding (WTST) and the Block-matching and 3D Filtering (BM3D). Results using phantom and clinical images showed that the proposed algorithm is capable of filtering the additional noise in images without apparent loss of information.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-29032016-160603 |
Date | 19 February 2016 |
Creators | Helder Cesar Rodrigues de Oliveira |
Contributors | Marcelo Andrade da Costa Vieira, Mauricio Cunha Escarpinati, Agma Juci Machado Traina |
Publisher | Universidade de São Paulo, Engenharia Elétrica, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds