Return to search

Méthodes numériques probabilistes en grande dimension pour le contrôle stochastique et problèmes de valorisation sur les marchés d'électricité

Cette thèse traite de la résolution numérique de problèmes de contrôle stochastique, illustrée d'applications sur les marchés d'électricité. Tout d'abord, nous proposons un modèle structurel pour le prix d'électricité, autorisant des pics de prix bien au delà du coût marginal de production lorsque le marché est tendu. Ce modèle permet de valoriser et couvrir partiellement des produits dérivés sur l'électricité, avec pour actifs de couverture des contrats à terme sur combustibles. Nous étudions ensuite un algorithme, à base de simulations de Monte-Carlo et régressions à base locale, pour résoudre des problèmes généraux de commutation optimale. Nous établissons un taux de convergence complet de la méthode. De plus, nous rendons l'algorithme parcimonieux en usage mémoire en permettant d'éviter le stockage du faisceau de trajectoires. Nous l'illustrons sur le problème d'investissements en centrales électriques (lesquelles se répercutent sur le prix d'électricité grâce à notre modèle structurel). Enfin, nous étudions des problèmes de contrôle stochastique plus généraux (où le contrôle peut être continu et modifier la dynamique du processus d'état), dont la solution peut être étudiée via des Équations Différentielles Stochastiques Rétrogrades contraintes, pour lesquelles nous développons un algorithme, qui combine randomisation du contrôle et optimisation paramétrique. Un taux de convergence entre l'EDSR contrainte et sa version discrète est fourni, ainsi qu'un estimateur du contrôle optimal. Nous appliquons ensuite cet algorithme au problème de sur-réplication d'option sous volatilité incertaine.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00957948
Date05 March 2014
CreatorsLangrené, Nicolas
PublisherUniversité Paris-Diderot - Paris VII
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0022 seconds