Spelling suggestions: "subject:"[MATH:MATH_PR] amathematics/probability"" "subject:"[MATH:MATH_PR] amathematics/aprobability""
1 |
Matrices aléatoires et probabilités libresBenaych-Georges, Florent 09 December 2011 (has links) (PDF)
Dans ce texte est présentée une sélection des travaux de l'auteur, portant, par exemple, sur la convolution libre rectangulaire, la transition de phase BBP, l'infinie divisibilité libre, les vecteurs propres de matrices de Wigner, etc...
|
2 |
Étude de modèles probabilistes de réseaux pair-à-pair et de réseaux avec mobilitéSimatos, Florian 03 December 2009 (has links) (PDF)
Le but de cette thèse est de traiter quatre problèmes motivés par les réseaux de communication modernes ; les outils appropriés pour résoudre ces problèmes ap- partiennent à la théorie des probabilités. La résolution de ces problèmes améliore la compréhension des systèmes physiques initiaux, et contribue en même temps à la théorie puisque de nouveaux résultats théoriques, intéressants en soi, sont prouvés. Deux types de réseaux de communication sont considérés. Les réseaux mobiles sont ces réseaux où les clients se déplacent dans le réseau indépendamment du service qu'ils reçoivent ; contrairement aux réseaux de files d'attente classiques, les transitions des clients ne sont pas liées aux fins de service. Dans les réseaux pair- à-pair, la distinction entre client et serveur est abolie, puisque dans ces réseaux un serveur est un ancien client qui offre le fichier après l'avoir téléchargé. Ces derniers réseaux sont particulièrement efficaces pour disséminer des fichiers gros ou popu- laires. Dans les Chapitres I et II, le comportement stationnaire de tels réseaux est considéré. Dans chaque cas, le réseau est décrit par un processus de Markov à espace d'état discret et à temps continu, et l'on s'intéresse à son ergodicité ou au contraire à sa transience. Une spécificité de ces deux modèles est que les taux de transition des processus de Markov correspondants sont non bornés : dans le cas du réseau mobile du Chapitre I ceci est dû au fait que les clients bougent indépendamment les uns des autres, alors que pour le réseau pair-à-pair du Chapitre II, cela tient au fait que la capacité du système est proportionnelle au nombre de clients. Habituellement, l'analyse de la stabilité d'un réseau stochastique se fait par l'étude des limites d'une suite de processus de Markov correctement renormalisés, appelées limites fluides. Cette procédure est bien adaptée pour les processus “locale- ment additifs”, i.e., les processus qui se comportent localement comme des marches aléatoires ; cette propriété disparaît quand les taux de transition sont non bornés. Ces techniques sont néanmoins adaptées pour étudier la stabilité du réseau mobile du Chapitre I : utiliser des limites fluides pour étudier la stabilité de processus de Markov avec des taux de transition non bornés représente l'une des contributions de ce travail. Le réseau pair-à-pair du Chapitre II ne se prête quant à lui pas à ces tech- niques, et la stabilité découle alors de l'existence d'une fonction de Lyapounov. Un autre ingrédient clef est lié à une classe spéciale de processus de branchement. Ces nouveaux processus de branchement sont définis et étudiés dans le Chapitre II, et des estimations sur leur temps d'extinction permettent, avec des arguments de cou- plage, d'établir des résultats de stabilité du réseau stochastique. Outre le comportement stationnaire des réseaux pair-à-pair, leur comportement transient peut aussi être étudié : ce comportement est l'objet du modèle simple du Chapitre III. Ce modèle se concentre sur l'initialisation d'un réseau pair-à-pair dans un scénario d'arrivée en masse : au temps t = 0, un pair propose un nouveau fichier que N autres pairs veulent télécharger. Contrairement au modèle du Chapitre II, ici le flot d'arrivée de nouvelles requêtes n'est pas stationnaire, il est initialement très intense puis le devient de moins en moins. Bien que le système démarre avec un serveur et beaucoup de clients, le nombre de serveurs disponibles augmente avec le temps et l'on s'intéresse au temps nécessaire pour que le réseau se mette à niveau avec la grande demande initiale. Ce problème engendre un problème de boules et d'urnes intéressant en soi, qui est traité dans le Chapitre IV. Dans ce problème de boules et d'urnes, la distribution de probabilité qui décrit la manière dont les boules sont jetées est aléatoire : il s'agit donc d'un problème de boules et d'urnes en environnement aléatoire. De plus, les boules sont jetées dans un nombre infini d'urnes. Les problèmes de boules et d'urnes avec une infinité d'urnes sont bien étudiés, mais les résultats sur les problèmes de boules et d'urnes en environnement aléatoire sont peu nombreux. Quand il y a une infinité d'urnes, on peut s'intéresser à des quantités géométriques telle que l'emplacement de la première urne vide. De telles quantités ont parfois été étudiées dans des travaux antérieurs, en environnement déterministe : ici, grâce à l'utilisation de processus ponctuels, nous décrivons d'un coup tout le paysage des premières urnes vides, ce qui diffère des travaux précédents. En résumé, cette thèse contribue à la modélisation des réseaux mobiles et pair- à-pair ; d'un point de vue technique, des problèmes liés à la stabilité des processus de Markov, aux processus de branchement et aux problèmes de boules et d'urnes sont résolus.
|
3 |
Martingales avec marginales spécifiesDavid, Baker 18 December 2012 (has links) (PDF)
Cette thèse décrit des méthodes de construction de martingales avec marginales spécifiées. La première collection de méthodes procède par quantization. C'est-à-dire en approximant une mesure par une autre mesure dont le support consiste en un nombre fini de points. Nous introduisons une méthode de quantization qui préserve l'ordre convexe. L'ordre convexe est un ordre partiel sur l'espace des mesures qui les compare en termes de leur dispertion relative. Cette nouvelle méthode de quantization présente l'avantage que si deux mesures admettent une transition de martingale alors les mesures quantisées en admettent aussi. Ceci n'est pas le cas pour la méthode de quantization habituellement utilisée en probabilités (la méthode de quantization L2). Pour les mesures quantifiés nous présentons plusieurs méthodes de construction de transition de martingale. La première méthode procède par programmation linéaire. La deuxième méthode procède par construction de matrices avec diagonale et spectre données. La troisième méthode procède par l'algorithme de Chacon et Walsh. Dans une seconde partie la thèse présente une nouvelle solution au problème du plongement de Skorokhod. Dans une troisième partie la thèse étudie la construction de martingales à temps continu avec marginales données. Des constructions sont données à l'aide du draps Brownien. D'autres constructions sont données en modifiant une méthode développée par Albin, les martingales construites ainsi possèdent une propriété de scaling.. Dans une partie annexe, certaines conséquences de cette théorie concernant le management du risque des options asiatiques, par rapport à leur sensibilité à la volatilité et à la maturité sont établies.
|
4 |
Etude des taux d'interet long terme Analyse stochastique des processus ponctuels determinantauxIsabelle, Camilier 13 September 2010 (has links) (PDF)
Dans la premiere partie de cette these, nous donnons un point de vue financier sur l'etude des taux d'interet long terme. En finance, les modeles classiques de taux ne s'appliquent plus pour des maturites longues (15 ans et plus). Nous montrons que les techniques de maximisation d'utilite esperee permettent de retrouver la regle de Ramsey (qui relie la courbe des taux a l'utilite marginale de la consommation optimale). En marche incomplet, il est possible de montrer un analogue de la regle de Ramsey et nous examinons la maniere dont la courbe des taux est modifiee. Ensuite nous considerons le cas ou il y a une incertitude sur un parametre du modele, puis nous etendons ces resultats au cas ou les fonctions d'utilites sont stochastiques. D'autre part nous proposons dans cette these une nouvelle maniere d'apprehender la consommation, comme des provisions que l'investisseur met de cote pour les utiliser en cas d'un evenement de defaut. Alors le probleme de maximisationn de l'utilite esperee de la richesse et de la consommation peut etre vu comme un probleme de maximisation de l'utilite esperee de la richesse terminale avec un horizon aleatoire. La deuxieme partie de cette these concerne l'analyse stochastique des processus ponctuels determinantaux. Les processus determinantaux et permanentaux sont des processus ponctuels dont les fonctions de correlations sont donnees par un determinant ou un permanent. Les points de ces processus ont respectivement un comportement de repulsion ou d'attraction: ils sont tres loin de la situation d'absence de correlation rencontree pour les processus de Poisson. Nous etablissons un resultat de quasi-invariance: nous montrons que si nous perturbons les point le long d'un champ de vecteurs, le processus qui en resulte est toujours un determinantal, dont la loi est absolument continue par rapport a la distribution d'origine. En se basant sur cette formule et en suivant l'approche de Bismut du calcul de Malliavin, nous donnons ensuite une formule d'integration par parties.
|
5 |
Coalescent distingués échangeables et processus de Fleming-Viot généralisés avec immigration.Foucart, Clément 11 September 2012 (has links) (PDF)
L'objet de la thèse est d'étudier des processus stochastiques coalescents modélisant la généalogie d'une population échangeable avec immigration. On représente la population par l'ensemble des entiers N = {1, 2, ..}. Imaginons que l'on échantillonne n individus dans la population aujourd'hui. On cherche à regrouper ces n individus selon leur ancêtre en remontant dans le temps. En raison de l'immigration, il se peut qu'à partir d'une certaine génération, certains individus n'aient pas d'ancêtre dans la population. Par convention, nous les regrouperons dans un bloc que nous distinguerons en ajoutant l'entier 0. On parle du bloc distingué. Les coalescents distingués échangeables sont des processus à valeurs dans l'espace des partitions de Z+ := {0, 1, 2, ...}. A chaque temps t est associée une partition distinguée échangeable, c'est-à-dire une partition dont la loi est invariante sous l'action des permu- tations laissant 0 en 0. La présence du bloc distingué implique de nouvelles coagulations, inexistantes dans les coalescents classiques. Nous déterminons un critère suffisant (et né- cessaire avec conditions) pour qu'un coalescent distingué descende de l'infini. C'est-à-dire qu'immédiatement après 0, le processus n'ait plus qu'un nombre fini de blocs. D'autre part, nous nous intéressons à une relation de dualité entre ces coalescents et des processus à valeurs dans les mesures de probabilité, appelés processus de Fleming-Viot généralisés avec immigration. Nous établissons des liens entre ces derniers et les processus de branchement continus avec immigration. Dans le cas d'un processus de branchement avec reproduction α-stable et immigration (α−1)-stable, nous montrons que le processus à valeurs mesures associé, renormalisé, est un processus de Fleming-Viot avec immigration changé de temps.
|
6 |
Trois chemins contrôlésChouk, Khalil 20 January 2014 (has links) (PDF)
Dans cette thèse nous nous proposons de donner certaines applications et généralisations de la théorie des chemins rugueux contrôlé, qu'on peut résumer en trois thèmes : - Obtention d'une " bonne " notions de draps rugueux ce qui permet la construction d'une intégrale plane diriger par des bruit très irrégulier et obtenir une formule de changement de variable pour un drap Brownien fractionnaire ou plus généralement un drap Gaussien.- Construction de solution local et global pour une large classe d'équations aux dérivée partielle dispersive présentant des modulation irrégulière en utilisant l'intégrale de Young non linéaire et la notion de chemin contrôlé. - Interprétation rigoureuse de l'équation de quantisation stochastique en dimension 3 et la construction d'une solution local pour cette dernière en utilisant le notion de distribution contrôlé.
|
7 |
Formes de Dirichlet et applications en théorie ergodique des chaînes de MarkovPoly, Guillaume 07 December 2011 (has links) (PDF)
En utilisant le calcul de Malliavin et la théorie des formes de Dirichlet à travers la propriété de densité de l'énergie image, nous menons une étude de la régularité des mesures invariantes. Les cas discret et continu sont traités. Nous en déduisons des vitesses de convergence à l'équilibre, grace à un renforcement "quantitatif" de la propriété de densité de l'énergie image, qui permet d'établir des convergences en variation totale de mesures. De nombreuses conséquences sont déduites de cette propriété, comme le caractère Rajchman des variables non dégénérées au sens de l'opérateur carré du champ, ceci va dans le sens de la conjecture de Bouleau-Hirsch.
|
8 |
Arbres, Processus de branchement non markoviens et Processus de LévyRichard, Mathieu 05 December 2011 (has links) (PDF)
Dans cette thèse, nous nous intéressons à trois développements des arbres de ramification("splitting trees") introduits par Geiger & Kersting (1997), et aux processus de branchement de Crump-Mode-Jagers (CMJ) qui y sont associés. Ces arbres aléatoires modélisent une population où tous les individus ont des durées de vie indépendantes et identiquement distribuées et qui donnent naissance à taux constant b durant leurs vies à des copies d'eux-mêmes. Le processus comptant le nombre d'individus vivants au cours du temps est un processus CMJ binaire et homogène qui peut être vu comme une généralisation du processus de vie et de mort markovien dans lequel les durées de vie sont exponentielles. Dans un premier chapitre, nous considérons un modèle île-continent, généralisant celui de Karlin et McGregor, et dans lequel des individus portant des types immigrent à taux T vers une île et y fondent des familles qui évoluent indépendamment et suivant le mécanisme décrit précédemment. Différentes hypothèses sont faites sur la façon dont les types sont choisis (soit chaque nouvel immigrant est d'un type différent des précédents, soit il est de type i avec une proba pi, etc.) et nous déterminons les proportions asymptotiques de chacun des types dans la population totale. Dans le cas "nouvel immigrant=nouveau type", la limite suit une distribution GEM de paramètre T/b et nous remarquons qu'elle ne dépend que de ce rapport et pas de loi de la durée de vie des individus. Dans un second temps, nous étudions un autre modèle de population dans des mutations pouvant se produire à la naissance des individus avec une certaine probabilité. Nous considérons un modèle dit à une infinité d'allèles, c'est-à-dire que chaque mutant est d'un type (ou allèle) jamais rencontré auparavant, et neutre car quels que soient leurs types, les individus évoluent tous de la même manière. Nous étudions la partition allélique de la population en considérant son spectre de fréquence qui décrit le nombre de types d'âge donné et portés par un nombre donné d'individus. Nous obtenons des résultats concernant son comportement asymptotique en utilisant les caractéristiques aléatoires de Jagers & Nerman. Nous donnons également la convergence en loi des abondances des plus grandes familles et des âges des plus vieilles familles. Dans le dernier chapitre, nous nous intéressons à des processus de Lévy spectralement positifs (ou sans sauts négatifs), ne dérivant pas vers l'infini et que l'on conditionne à rester positifs en un nouveau sens. Pour cela, un processus X partant de x > 0 est conditionné à atteindre des hauteurs arbitrairement grandes avant de toucher 0 où le terme hauteur est à comprendre au sens du processus des hauteurs de Duquesne & Le Gall (2002). La loi du processus conditionné est définie à l'aide d'une h-transformée via une martingale. Lorsque X est à variation finie, l'argument principal est que X peut être vu comme le processus de contour d'un arbre de ramification et ainsi conditionner le processus de Lévy revient à conditionner l'arbre à atteindre des générations arbitrairement grandes. Lorsque X est à variation infinie, le processus des hauteurs est défini à l'aide de temps locaux et la martingale est construite à partir du processus d'exploration de Duquesne et Le Gall, qui est un processus de Markov à valeurs mesures.
|
9 |
Méthode de "Malliavin-Stein" multi-dimensionelle sur l'espace de Poisson: application aux théorèmes centraux limitesZheng, Cengbo 28 November 2011 (has links) (PDF)
Dans cette thèse nous nous concentrons sur l'établissement de certains théorèmes limite et l'approximations probabilistes. Un théorème limite est un résultat indiquant que la structure à grande échelle de certains systèmes aléatoires peut être véritablement approchée par une distribution de probabilité typique. Les exemples classiques sont le Théorème Central Limite , le principe d'invariance de Donsker, etc. D'autre part, nous appelons approximation probabiliste toute formalation mathématique permettant d'évaluer des distances entre les lois de deux éléments aléatoires. Lorsque l'une des distributions est gaussienne, on parle d'approximation normale. Le TCL et l'approximation normale associée sont l'un des thèmes récurrents de toute la théorie des probabilités. Au cours des cinq dernières années, I. Nourdin, G. Peccati et d'autres auteurs ont développé une nouvelle théorie d'approximations normales et non normales pour des variables aléatoires sur l'espace de Wiener, qui est basée sur l'utilisation d'un calcul de variations de dimension infinie, connu sous le nom de ''calcul de Malliavin'', ainsi que la célèbre ''méthode de Stein'' pour les approximations probabilistes. Leur travail généralise les résultats précédents par D. Nualart et G. Peccati à propos de théorèmes limite portant sur les chaos de Wiener. Après cela, G. Peccati, J. L. Solé, M.S. Taqqu et F. Utzet ont étendu cette méthode pour obtenir des approximations normales sur l'espace de Poisson. L'objectif de cette thèse est d'obtenir des TCLs multi-dimensionnels sur l'espace de Poisson, ainsi que plusieurs extensions.
|
10 |
Méthodes de Contrôle Stochastique pour la Gestion Optimale de PortefeuilleEspinosa, Gilles-Edouard 09 June 2010 (has links) (PDF)
Cette thèse présente trois sujets de recherche indépendants, le dernier étant décliné sous forme de deux problèmes distincts. Ces différents sujets ont en commun d'appliquer des méthodes de contrôle stochastique à des problèmes de gestion optimale de portefeuille. Dans une première partie, nous nous intéressons à un modèle de gestion d'actifs prenant en compte des taxes sur les plus-values. Dans une seconde partie, nous étudions un problème de détection du maximum d'un processus de retour à la moyenne. Dans les troisième et quatrième parties, nous regardons un problème d'investissement optimal lorsque les agents se regardent les uns les autres. Enfin dans une cinquième partie, nous étudions une variante de cette problématique incluant un terme de pénalisation au lieu de contraintes sur les portefeuilles admissibles.
|
Page generated in 0.0988 seconds