• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 50
  • 33
  • Tagged with
  • 138
  • 138
  • 138
  • 82
  • 78
  • 47
  • 25
  • 25
  • 24
  • 24
  • 23
  • 23
  • 22
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Analyse numérique de méthodes performantes pour les EDP stochastiques modélisant l'écoulement et le transport en milieux poreux

Oumouni, Mestapha 05 June 2013 (has links) (PDF)
Ce travail présente un développement et une analyse des approches numériques déterministes et probabilistes efficaces pour les équations aux dérivées partielles avec des coefficients et données aléatoires. On s'intéresse au problème d'écoulement stationnaire avec des données aléatoires. Une méthode de projection dans le cas unidimensionnel est présentée, permettant de calculer efficacement la moyenne de la solution. Nous utilisons la méthode de collocation anisotrope des grilles clairsemées. D'abord, un indicateur de l'erreur satisfaisant une borne supérieure de l'erreur est introduit, il permet de calculer les poids d'anisotropie de la méthode. Ensuite, nous démontrons une amélioration de l'erreur a priori de la méthode. Elle confirme l'efficacité de la méthode en comparaison avec celle de Monte Carlo et elle sera utilisée pour accélérer la méthode par l'extrapolation de Richardson. Nous présentons aussi une analyse numérique d'une méthode probabiliste pour quantifier la migration d'un contaminant dans un milieu aléatoire. Nous considérons le problème d'écoulement couplé avec l'équation d'advection-diffusion, où on s'intéresse à la moyenne de l'extension et de la dispersion du soluté. Le modèle d'écoulement est discrétisé par une méthode des éléments finis mixtes, la concentration du soluté est une densité d'une solution d'une équation différentielle stochastique, qui sera discrétisée par un schéma d'Euler. Enfin, nous présentons une formule explicite de la dispersion et des estimations de l'erreur a priori optimales.
42

Valeurs extrêmes de mosaïques aléatoires

Chenavier, Nicolas 11 December 2013 (has links) (PDF)
Une mosaïque aléatoire est une partition aléatoire de l'espace euclidien en des polytopes appelés cellules. Ce type de structure apparaît dans divers domaines tels que la biologie cellulaire, les télécommunications et la segmentation d'images. Beaucoup de travail a déjà été effectué sur la cellule typique c'est-à-dire sur une cellule "choisie uniformément". Cependant, ces travaux ne tiennent pas compte de l'irrégularité de la mosaïque et d'éventuelles cellules pathologiques (par exemple, celles qui sont anormalement allongées ou anormalement grandes). Dans cette thèse, on étudie les mosaïques aléatoires par une approche inédite: celle des valeurs extrêmes. En pratique, on observe la mosaïque aléatoire dans une fenêtre et on considère une certaine caractéristique géométrique (comme le volume, le nombre de sommets ou le diamètre des cellules). Le problème de base est d'étudier le comportement du maximum et du minimum, voire des statistiques d'ordre, de cette caractéristique pour toutes les cellules de la fenêtre lorsque la taille de celle-ci tend vers l'infini. Une telle approche permet non seulement de mieux comprendre la régularité de la mosaïque mais aussi d'étudier la qualité d'une approximation discrète d'un ensemble par des cellules d'une mosaïque aléatoire. Cette approche pourrait également fournir une piste inédite pour discriminer les processus ponctuels. Les résultats de cette thèse portent principalement sur des théorèmes limites des extrêmes et des statistiques d'ordre pour diverses caractéristiques géométriques et diverses mosaïques aléatoires. En particulier, on obtient des vitesses de convergence en établissant de fines estimations géométriques. On déduit de l'étude du maximum des diamètres une majoration de la distance de Hausdorff entre un ensemble et son approximation dite de Poisson-Voronoï. On traite, notamment, de plusieurs aspects géométriques comme les problèmes de bord et la forme des cellules optimisantes. Enfin, dans le but de savoir comment se répartissent les cellules excédentes (celles dont la caractéristique est grande), on s'intéresse à la convergence de processus ponctuels associés et à la taille moyenne d'un cluster d'excédents. Les outils utilisés sont issus à la fois de la géométrie aléatoire (mesure de Palm, probabilités de recouvrement, formule de Slivnyak) et de la théorie des valeurs extrêmes (graphes de dépendance, méthode de Chen-Stein, indice extrême).
43

Construction et étude de quelques processus multifractals

Perpète, N. 19 February 2013 (has links) (PDF)
Mis en évidence dans les années 80 dans les domaines de la turbulence et des attracteurs étranges, les multifractals ont rapidement gagné en popularité. On les trouve aujourd'hui en finance, en géophysique, dans l'étude du trafic internet et dans bien d'autres domaines des sciences appliquées. Cet essor s'est accompagné de la nécessité de construire des modèles théoriques adaptés. La Mesure Aléatoire Multifractale de Bacry et Muzy est l'un de ces modèles. Du fait de son caractère très général, de sa grande souplesse et de sa relative simplicité, elle est devenue un outil central du domaine des multifractals depuis dix ans. Après un chapitre introductif, on propose dans cette thèse la construction de deux familles de processus multifractals. Ces constructions reposent sur les travaux de Schmitt et de ses co-auteurs et sur ceux de Bacry et Muzy. Dans le chapitre 2, on construit des processus multifractals à partir de moyennes mobiles alpha-stables, tandis que le chapitre 3 est consacré à la construction des Marches Aléatoires Fractionnaires Multifractales d'indice de Hurst 0
44

Contributions à la modélisation de la dépendance stochastique

Lebrun, Régis 24 May 2013 (has links) (PDF)
Dans cette thèse, nous étudions la modélisation de la dépendance stochastique entre composantes d'un vecteur aléatoire sous l'angle des copules. La première partie des travaux consiste en une exploration numérique des notions de copule et de mesure de dépendance stochastique dans le contexte de la modélisation des incertitudes en simulation numérique. La seconde partie des travaux porte sur l'étude des transformations de Nataf et de Rosenblatt. Nous montrons que la transformation de Nataf consiste à supposer que le vecteur aléatoire est muni d'une copule Gaussienne. Nous généralisons cette transformation à une distribution absolument continue à copule elliptique quelconque. Nous montrons également l'équivalence entre les transformations de Nataf et de Rosenblatt dans le cas d'une copule Gaussienne. La troisième partie étudie la notion de dépendance stochastique sous contrainte. Nous caractérisons les lois jointes de statistiques d'ordre continues en termes de lois marginales et de copules, et nous proposons une nouvelle famille de copules adaptée à cette modélisation. Nous caractérisons l'existence et l'unicité d'un élément maximal dans cette famille. La quatrième partie s'intéresse aux lois multivariées discrètes, pour lesquelles la notion de copule n'est plus en bijection avec celle de fonction de répartition jointe. Nous établissons un algorithme innovant pour le calcul de probabilités rectangulaires pour une large classe de tels modèles, surclassant les meilleurs algorithmes disponibles tant en termes de précision numérique que de temps de calcul et d'occupation mémoire.
45

Dynamique stochastique d'interface discrète et modèles de dimères

Laslier, Benoît 02 July 2014 (has links) (PDF)
Nous avons étudié la dynamique de Glauber sur les pavages de domaines finies du plan par des losanges ou par des dominos de taille 2 × 1. Ces pavages sont naturellement associés à des surfaces de R^3, qui peuvent être vues comme des interfaces dans des modèles de physique statistique. En particulier les pavages par des losanges correspondent au modèle d'Ising tridimensionnel à température nulle. Plus précisément les pavages d'un domaine sont en bijection avec les configurations d'Ising vérifiant certaines conditions au bord (dépendant du domaine pavé). Ces conditions forcent la coexistence des phases + et - ainsi que la position du bord de l'interface. Dans la limite thermodynamique où L, la longueur caractéristique du système, tend vers l'infini, ces interfaces obéissent à une loi des grand nombre et convergent vers une forme limite déterministe ne dépendant que des conditions aux bord. Dans le cas où la forme limite est planaire et pour les losanges, Caputo, Martinelli et Toninelli [CMT12] ont montré que le temps de mélange Tmix de la dynamique est d'ordre O(L^{2+o(1)}) (scaling diffusif). Nous avons généralisé ce résultat aux pavages par des dominos, toujours dans le cas d'une forme limite planaire. Nous avons aussi prouvé une borne inférieure Tmix ≥ cL^2 qui améliore d'un facteur log le résultat de [CMT12]. Dans le cas où la forme limite n'est pas planaire, elle peut être analytique ou bien contenir des parties "gelées" où elle est en un sens dégénérée. Dans le cas où elle n'a pas de telle partie gelée, et pour les pavages par des losanges, nous avons montré que la dynamique de Glauber devient "macroscopiquement proche" de l'équilibre en un temps L^{2+o(1)}
46

Marches aléatoires en environnement aléatoire faiblement elliptique

Bouchet, Élodie 30 June 2014 (has links) (PDF)
Cette thèse est dédiée à l'étude des marches aléatoires en milieu aléatoire sur Zd. On s'intéresse tout particulièrement aux environnements qui sont elliptiques, mais pas uniformément elliptiques, et qui peuvent donc contenir des pièges sur lesquels la marche passe beaucoup de temps. Le premier résultat de cette thèse (chapitre 4) concerne les environnements de Dirichlet, qui forment une sous-classe de marches aléatoires en milieu aléatoire présentant des propriétés remarquables. On se place en dimension d≥ 3 et on étudie le cas où les pièges dus à la non-uniforme ellipticité sont prépondérants. Dans ce contexte, on montre l'équivalence des points de vue statique et dynamique pour une marche accélérée. Ceci permet de compléter les résultats de transience et récurrence directionnelles obtenus par Sabot, et de donner le degré polynomial de l'éloignement de la marche par rapport à l'origine dans le cas sous-balistique et transient. On se place ensuite (chapitre 5) dans le cas des marches transientes dans une direction, et on étudie les conditions sur la loi de l'environnement nécessaires pour assurer l'existence de moments pour les temps de renouvellement. On améliore ainsi les résultats obtenus par Campos et Ramírez. Dans la dernière partie (chapitre 6), on étudie les conditions d'application du théorème central limite quenched dans le cas des marches aléatoires balistiques. Sous la condition supplémentaire (T), on affaiblit les hypothèses sur l'intégrabilité des temps de renouvellement des travaux de Rassoul-Agha et Seppäläinen et de Berger et Zeitouni : on arrive à la condition E (τ12+ε) < +∞ (pour le théorème annealed la condition optimale est E (τ12) < +∞)
47

Problèmes de diffusion pour des chaînes d'oscillateurs harmoniques perturbées

Simon, Marielle 17 June 2014 (has links) (PDF)
L'équation de la chaleur est un phénomène macroscopique, émergeant après une limite d'échelle diffusive (en espace et en temps) d'un système d'oscillateurs couplés. Lorsque les interactions entre oscillateurs sont linéaires, l'énergie évolue de manière balistique, et la conductivité thermique est infinie. Certaines non-linéarités doivent donc apparaître au niveau microscopique, si l'on espère observer une diffusion normale. Pour apporter de l'ergodicité, on ajoute à la dynamique déterministe une perturbation stochastique qui conserve l'énergie. En premier lieu nous étudions la dynamique Hamiltonienne d'un système d'oscillateurs linéaires, perturbé par un bruit stochastique dégénéré conservatif. Ce dernier transforme à des temps aléatoires les vitesses en leurs opposées. On montre que l'évolution macroscopique du système est caractérisée par un système parabolique non-linéaire couplé pour les deux lois de conservation du modèle. Ensuite, nous supposons que les oscillateurs évoluent en environnement aléatoire. La perturbation stochastique est très dégénérée, et on prouve que le champ de fluctuations de l'énergie à l'équilibre converge vers un processus d'Ornstein-Uhlenbeck généralisé dirigé par l'équation de la chaleur.Il est désormais connu que les systèmes unidimensionnels présentent une diffusion anormale lorsque le moment total est conservé en plus de l'énergie. Dans une troisième partie, on considère deux perturbations, l'une préservant le moment, l'autre détruisant cette conservation. En faisant décroître l'intensité de la seconde perturbation, on observe une transition de phase entre un régime de diffusion normale et un régime de superdiffusion.
48

Dynamique de carnets d'ordres boursiers : modèles stochastiques et théorèmes limites

De Larrard, Adrien 02 October 2012 (has links) (PDF)
Cette thèse propose un cadre mathématique pour la modélisation de la dynamique du prix et du flux d'ordres dans un marché électronique ou' les participants achètent et vendent un produit financier en soumettant des ordres limites et des ordres de marche à haute fréquence à un carnet d'ordres centralisé. Nous proposons un modèle stochastique de carnet d'ordres en tant que système de files d'attente représentant la totalité des ordres d'achat et de vente au meilleur niveau de prix (bid/ask) et nous montrons que les principales caractéristiques de la dynamique du prix dans un tel marche peuvent être comprises dans ce cadre. Nous étudions en détail la relation entre les principales propriétés du prix et la dynamique du processus ponctuel décrivant l'arrivée et l'exécution des ordres, d'abord dans un cadre Markovien (Chapitre 2) puis, en utilisant des méthodes asymptotiques, dans le cadre plus général d'un processus ponctuel stationnaire dans sa limite heavy traffic, pour lequel les ordres arrivent fréquemment, comme c'est le cas pour la plupart des marches liquides (Chapitres 3 et 4). Le Chapitre 2 étudie un modèle Markovien de dynamique de carnet d'ordres, dans lequel l'arrivée d'ordres de marche, d'ordres limites et d'annulations est d'écrite à l'aide d'un processus de Poisson ponctuel. L'état du carnet d'ordres est d'écrit par une marche aléatoire changée de temps dans le quadrant positif et régénérée à chaque fois qu'elle atteint le bord. Ce modèle permet d'obtenir des expressions analytiques pour la distribution des durées entre changements de prix, la distribution et les autocorrelations des changements de prix, ainsi que la probabilité que le prix augmente, conditionnellement à l'état du carnet d'ordres. Nous étudions la limite de diffusion du prix et exprimons la volatilité des changements de prix à l'aide de paramètres décrivant l'intensité des ordres d'achat, de vente et d'annulations. Ces résultats analytiques permettent de mieux comprendre le lien entre volatilité du prix et flux d'ordres. Le Chapitre 3 étudie un modèle plus général de carnet d'ordres pour lequel les arrivées d'ordres et les tailles d'ordres proviennent d'un processus ponctuel stationnaire très général. Nous obtenons un théorème central limite fonctionnel pour la dynamique jointe des files d'attente des ordres de vente et d'achat, et prouvons que, pour un marche liquide, dans lequel les ordres d'achat et de vente arrivent à haute fréquence, la dynamique du carnet d'ordres peut être approximée par un processus à sauts Markovien diffusant dans l'orthant et dont les caractéristiques peuvent être exprimées à l'aide de propriétés statistiques du flux d'ordres sous-jacent. Ce résultat permet d'obtenir des approximations analytiques pour plusieurs quantities d'intérêt telles que la probabilité que le prix augmente ou la distribution de la durée avant le prochain changement de prix, conditionnellement à l'état du carnet d'ordres. Ces quantités sont exprimées en tant que solutions d'équations elliptiques, pour lesquelles nous donnons des solutions explicites dans certains cas importants. Ces résultats s'appliquent à une classe importante de modèles stochastiques, incluant les mod'eles bas'es sur les processus de Poisson, les processus auto-excitants ou la famille de processus ACD-GARCH. Le Chapitre 4 est une étude plus détaillée de la dynamique du prix dans un marche où les ordres de marche, les ordres limites et les annulations arrivent à haute fréquence. Nous étudions d'abord la dynamique discrète du prix à l'échelle de la seconde et nous obtenons des relations analytiques entre les propriétés statistiques des changements de prix dans une journée -distribution des incréments du prix, retour à la moyenne et autocorrelations- et des propriétés du processus décrivant le flux d'ordres et la profondeur du carnet d'ordres. Ensuite nous étudions le comportement du prix à des fréquences vi CONTENTS vii plus faibles pour plusieurs régimes asymptotiques -limites fluides et diffusives- et nous obtenons pour chaque cas la tendance du prix et sa volatilité en fonction des intensités d'arrivées d'ordres d'achat, de vente et d'annulations ainsi que la variance des tailles d'ordres. Ces formules permettent de mieux comprendre le lien entre volatilité du prix d'un côté et le flux d'ordres, décrivant la liquidité, d'un autre cote. Nous montrons que ces résultats sont en accord avec la réalité des marches liquides.
49

Grandes déviations pour les temps locaux d'auto-intersections de marches aléatoires

Laurent, Clément 18 November 2011 (has links) (PDF)
Dans cette thèse on s'intéresse au temps local d'auto-intersections de marches aléatoires. Cette quantité est définie comme la norme-$p$ à la puissance $p$ du temps local de la marche. Elle regarde dans quelle mesure la trajectoire de la marche aléatoire s'intersecte. Le temps local d'auto-intersections est lié à différents modèles physiques comme les modèles de polymères ou les problèmes d'écoulements de flux en milieux stratifiés mais aussi au modèle mathématiques des marches aléatoires en paysages aléatoires. Nous nous sommes pour notre part intéressés en particulier aux grandes déviations du temps local d'auto-intersections, c'est à dire que nous regardons la probabilité que la quantité d'intersections de la marche aléatoire soit plus grande que sa moyenne. Cette question qui a été très étudiée au cours des années 2000 fait apparaitre trois cas distincts, le cas sous-critique, le cas critique et le cas sur-critique. Nous améliorons la connaissance sur cette question au travers de deux résultats complets et d'un résultat partiel. D'abord nous prouvons un principe de grandes déviations dans les cas critique et sur-critique des marches $\alpha$-stables, puis nous améliorons les échelles de déviations au cas sous-critique tout entier de la marche simple, enfin nous sommes en train d'étendre ce dernier résultat aux marches $\alpha$-stables. Par ailleurs les trois preuves sont basées sur l'utilisation d'une version due à Eisenbaum d'un théorème d'isomorphisme de Dynkin. Cette méthode d'abord introduite par Castell dans le cas critique est donc ici étendue aux autres cas. Nous avons donc réussi à unifier les différentes méthodes de preuves au travers ce théorème d'isomorphisme.
50

Modélisation de la croissance d'une tumeur après traitement par radiothérapie

Keinj, Roukaya 02 December 2011 (has links) (PDF)
Nous avons proposé dans cette thèse une nouvelle approche de modélisation des réponses cellulaire et tumorale durant la radiothérapie. Cette modélisation est fondée sur les chaînes de Markov. Elle se situe dans le cadre de la théorie de cible qui suppose qu'il existe dans la cellule des régions sensibles appelées cibles, qui doivent toutes être désactivées pour tuer la cellule. Un premier travail est consisté à proposer un modèle à temps discret en tenant compte non seulement des phases de réparations cellulaires entre les fractions de dose mais également de l'hétérogénéité des dommages cellulaires. Nous avons ensuite proposé un modèle stochastique de la durée de vie cellulaire. Cette modélisation fut également étendue à une population de cellules et a permis d'établir de nouvelles expressions des probabilités d'eﰓcacité et de complication thérapeutique. Nos derniers travaux portent sur le développement d'un modèle de type chaîne de Markov à temps continu qui pourrait être appliqué aux réponses des tumeurs traitées par la thérapie photodynamique.

Page generated in 0.1382 seconds