Spelling suggestions: "subject:"marches aléatoire""
1 |
Fluctuations des marches aléatoires en dimension 1 Théorèmes limites locaux pour des marches réfléchies sur NEssifi, Rim 19 March 2014 (has links) (PDF)
L'objet de cette thèse est d'établir des théorèmes limites locaux pour des marches aléatoires réfléchies sur N. La théorie des fluctuations des marches aléatoires et la factorisation de Wiener-Hopf y jouent un rôle important. On développera dans la première partie une approche classique que l'on appliquera à l'étude des marches aléatoires sur R+ avec réflexions non élastiques en 0. Dans la deuxième partie, on explicitera une méthode différente qui fait intervenir des outils algébriques, d'analyse complexe et des techniques de factorisation utilisant de manière essentielle les fonctions génératrices. Cette approche a été développée il y a une cinquantaine d'année pour l'étude de marches de Markov, elle sera présentée dans cette partie dans le cas des marches aléatoires à pas i.i.d. où un certain nombre de simplifications apparaissent et sera ensuite utilisée pour étudier les marches aléatoires sur N avec réflexions élastiques ou non élastiques en zéro. Finalement, dans la dernière partie, nous mettons en place les outils nécessaires pour établir une factorisation de Wiener-Hopf dans un cadre markovien afin d'étudier les fluctuations des marches de Markov sur Z ; nous reprenons des travaux anciens dont les démonstrations méritaient d'être détaillées, l'objectif à moyen terme étant d'appliquer les méthodes algébriques décrites ci-dessus pour l'étude de marches de Markov réfléchies sur N.
|
2 |
Marches aléatoires renforcées et opérateurs de Schrödinger aléatoires / Reinforced random walks and Random Schrödinger operatorsZeng, Xiaolin 30 November 2015 (has links)
Cette thèse s'intéresse à deux modèles de processus auto intéagissant étroitement reliés: le processus de sauts renforcé par sites (VRJP) et la marche aléatoire renforcée par arêtes (ERRW). Nous étudions aussi les liens entre ces processus et un opérateur de Schrödinger aléatoire. Dans le chapitre 3, nous montrons que le VRJP est le seul processus satisfaisant la propriété d'échangeabilité partielle et tel que la probabilité de transition ne dépende que du temps local des voisins, sous quelques conditions techniques. Le chapitre 4 donne la transition de phase entre vitesse positive et vitesse nulle pour un VRJP transitoire sur un arbre de Galton Watson, utilisant le fait que sur un arbre, le VRJP est une marche aléatoire en milieu aléatoire. Dans le chapitre 5, une nouvelle famille exponentielle de loi est introduite et ses liens avec le VRJP sont étudiés. En particulier, nous donnons une preuve de la formule de Coppersmith et Diaconis, n'utilisant que des calculs élémentaires. Finalement, dans le chapitre 6 nous étudions la représentation du VRJP comme mélange de processus de Markov sur les graphes infinis. Nous représentons le VRJP à l'aide de la fonction de Green et d'une fonction propre généralisée d'un opérateur de Schrödinger aléatoire associé au VRJP. En conséquence, nous obtenons un principe d'invariance pour le VRJP quand le renforcement est suffisamment faible, ainsi que la récurrence du ERRW sur ℤ2 pour toute valeurs initiales des paramètres / This thesis is dedicated to the study of two closely related self-interacting processes: the vertex reinforced jump process (VRJP) and the edge reinforced random walk (ERRW). We also study the relations between these processes and a random Schrödinger operator. In Chapter 3, we prove that the VRJP is the only partially exchangeable process whose transition probability depends only on neighbor local times, under some technical conditions. Chapter 4 gives the phase transition between positive speed and null speed of a transient VRJP on a Galton Watson tree, using a representation of random walk in independent random environment. In Chapter 5, we introduce a new exponential family of probability distributions generalizing the Inverse Gaussian distribution, and we show some of its relations to the VRJP. In particular, we give an elementary proof of the formula of Coppersmith and Diaconis. Finally, we show in Chapter 6 that the VRJP on infinite graph is a mixture of Markov jump processes, by constructing the random environment using the Green function and a generalized eigenfunction related to a random Schrödinger operator associated with the VRJP. As a consequence, we obtain a central limit theorem when the reinforcement is weak enough, and also the recurrence of ERRW on ℤ2 for any initial constant weights
|
3 |
Marches Aléatoires avec Conductances AléatoiresBoukhadra, Omar 11 May 2010 (has links) (PDF)
L'objet de cette thèse est l'étude d'une classe importante de marches aléatoires en milieu aléatoire, appelée marches aléatoires avec conductances aléatoires. Nous présentons trois principaux résultats montrant des comportements opposés, irrégulier et standard du noyau de la chaleur des marches aléatoires avec conductances aléatoires à queue polynômiale. Les deux premiers (cf. Chapitre 2) portent sur les marches aléatoires simples dans $\Z^d, d>1$, gouvernées par une famille de conductances aléatoires i.i.d. à valeurs dans l'intervalle $[0,1]$, avec une queue polynomiale d'exposant $\gamma$ au voisinage de $0$. Nous montrons en premier lieu pour toute dimension supérieure à $4$ que la probabilité de retour après $2n$ sauts décroit de façon irrégulière en ce sens qu'elle admet une borne inférieure que l'on peut rendre, à un terme sous-polynomial près, aussi proche que l'on veut de $1/n^{2}$ en laissant le paramètre $\gamma$ tendre vers $0$. En considérant le même modèle et à l'opposé du premier résultat, nous montrons en second lieu pour toute dimension $d$ supérieure à $2$ que le noyau de la chaleur de la marche aléatoire admet une borne supérieure que l'on peut rendre, à un terme sous-polynomial près, aussi proche que l'on veut de la borne standard $1/n^{d/2}$ en laissant le paramètre $\gamma$ tendre vers l'infini. Nous considérons dans le troisième résultat (cf. Chapitre 3) les mêmes chaînes de Markov mais en temps continu et étudions la décroissance de la probabilité de retour asymptotique. Nous prouvons pour tout $\gamma> d/2$ que la dimension spectrale est standard, i.e. égale à $d$. Une conséquence prévisible de ce résultat est que ceci reste tout aussi vrai en temps discret.
|
4 |
Marches aléatoires en milieux aléatoires: Etude de quelques modèles multidimensionnelsSimenhaus, François 13 November 2008 (has links) (PDF)
Cette thèse est consacrée à différents modèles de marches aléatoires en milieux aléatoires; elle est constituée de $5$ chapitres. Les chapitres $1$ et $4$ sont essentiellement bibliographiques, ils couvrent une partie de la littérature consacrée au modèle i.i.d ainsi qu'à différents modèles où l'environnement est construit à partir d'une percolation. Dans le chapitre $2$ nous étudions la classe des marches admettant une direction asymptotique dans le cas du modèle i.i.d., c'est-à-dire tel que $X_n/|X_n|$ ait une limite deterministe sous la loi annealed. Nous établissons notamment qu'une marche admet une direction asymptotique si et seulement si elle est transiente dans toute les directions d'un ouvert non vide de $\mathbb{R}^d$. Dans le chapitre $3$, nous étudions un modèle de marches en temps continu en milieux aléatoires. Les différents résultats de cette partie décrivent l'impact du couplage entre les transitions et les taux de saut sur la vitesse de la marche. Le chapitre $5$ est consacré à un modèle de marche ralentie par les clusters d'une percolation sous-critique dans $\mathbb{Z}^d$. Nous montrons que, selon la force du ralentissement, la marche se place dans un régime sous-diffusif ou diffusif.
|
5 |
Modèles de dimères : comportements limitesBoutillier, Cédric 26 October 2005 (has links) (PDF)
Le modèle de dimères est un système de mécanique statistique qui modélise l'adsorption de molécules diatomiques sur la surface d'un cristal, représenté par un réseau périodique plan biparti. On attribue à chaque type d'arête une énergie. Pour une telle distribution d'énergie, il existe une famille à deux paramètres de mesures de Gibbs, dont les comportements sont classifiés en trois phases : gazeuse, liquide, solide.<br /><br />Dans la première partie, on étudie le comportement d'un tel système près de la transition liquide-solide. En examinant le cas du réseau hexagonal, nous exhibons deux types de comportements limites. Le premier est une collection de chemins aléatoires conditionnés à s'éviter. Le deuxième, le modèle du collier de perles, est un processus ponctuel sur ZxR. Ces deux modèles limites ont pour marginales le processus déterminantal sur R avec noyau sinus, décrivant aussi les valeurs propres des grandes matrices aléatoires de l'ensemble GUE. Le modèle du collier de perles est universel : on montre qu'il est la limite de tout modèle de dimères sur un graphe planaire biparti périodique.<br /><br />Dans une deuxième partie, on étudie la statistique des motifs dessinés par des dimères. Les fluctuations de densité d'un motif convergent à la limite d'échelle vers un champ gaussien. Dans le cas liquide, l'objet limite est la somme d'une dérivée du champ libre et d'un bruit blanc indépendant. Pour une mesure gazeuse, la limite est juste un bruit blanc.<br /><br />Enfin, on aborde un problème de dénombrement de chemins sur le graphe-échelle, lié à l'étude du noyau de la chaleur sur le groupe de l'allumeur de réverbères, ainsi qu'à celle des opérateurs de Schrödinger aléatoires.
|
6 |
Aspects probabilistes des automates cellulaires, et d'autres problèmes en informatique théoriqueGerin, Lucas 08 December 2008 (has links) (PDF)
Ce mémoire de thèse est consacré à l'étude de quelques problèmes de probabilités provenant de l'informatique théorique. Dans une première partie, nous étudions un algorithme probabiliste qui compte le nombre de mots différents dans une liste. Nous montrons que l'étude peut se ramener à un problème d'estimation, et qu'en modifiant légèrement cet algorithme, il est d'une certaine manière optimal. La deuxième partie est consacrée à l'étude de plusieurs problèmes de convergences pour des systèmes finis de particules, nous envisageons différents types de passage à une limite infinie. La première famille de systèmes considérés est une classe particulière d'automates cellulaires. En dimension 1, il apparaît des marches aléatoires dont nous caractérisons de façon complète les comportements limites. En dimension 2, sur une grille carrée, nous étudions quelques-un des cas les plus représentatifs. Nous en déterminons le temps moyen de convergence vers une configuration fixe. Enfin, nous étudions un modèle d'urnes avec des boules à deux états. Dans la troisième partie, nous étudions deux problèmes particuliers de marches aléatoires. Ces deux questions sont initialement motivées par l'étude de certains automates cellulaires, mais nous les présentons de façon indépendante. Le premier de ces deux problèmes est l'étude de marches aléatoires sur un tore discret, réfléchies les unes sur les autres. On montre la convergence de ce processus vers une limite brownienne. Nous étudions enfin de façon entièrement combinatoire une famille de marches aléatoires sur un intervalle, biaisées vers le bas. Nous en déterminons le temps moyen de sortie vers le haut.
|
7 |
Calcul asymptotique lié à l'étude de certains processus stochastiquesHerrmann, Samuel 30 November 2009 (has links) (PDF)
Ce document de synthèse présente différents travaux de recherche centrés sur le comportement asymptotique de processus stochastiques. Ces travaux analysent des équations différentielles stochastiques ou des systèmes d'EDS dirigés par des mouvements browniens. Ils font effectivement appel au calcul asymptotique: dans les questions posées, il s'agit bien souvent de considérer la limite d'un paramètre du système dynamique. Cela peut être: le coefficient de diffusion qui tend vers $0$, le temps qui croît à l'infini, le nombre de particules dans un système de particules en interaction qui tend vers l'infini, le pas de temps d'une marche aléatoire qui tend vers $0$. Les techniques utilisées sont donc spécifiques à ces passages à la limite: grandes déviations, estimation d'intégrales par la méthode de Laplace, limite de McKean-Vlasov, propagation du chaos, critère de tension des lois de processus, décomposition spectrale des semi-groupes.
|
8 |
Application des marches aleatoires a l'etude des sous-groupes des groupes lineaires.Aoun, Richard 27 May 2011 (has links) (PDF)
Dans cette thèse, nous utilisons et contribuons à la théorie des produits de matrices aléatoires afin d'étudier des propriétés génériques des éléments et des sous-groupes des groupes linéaires. Notre premier résultat donne une version probabiliste de l'alternative de Tits : nous montrons que si M_n et M'_n sont deux marches aléatoires indépendantes sur un groupe linéaire de type fini non virtuellement résoluble alors presque sûrement les deux marches finiront par engendrer un sous-groupe libre non abélien à deux générateurs. Cela répond par l'affirmative à une question de Guivarc'h et de Gilman, Miasnikov et Osin. Plus précisément, nous montrons que la probabilité que M_n et M'_n n'engendrent pas un sous-groupe libre décroit exponentiellement vite vers zéro. Notre outil principal est la théorie des produits de matrices aléatoires. Durant la preuve, nous établissons de nouveaux théorèmes limites dans cette théorie, d'une part en généralisant des résultats connus dans le cadre des produits de matrices à valeurs dans les corps archimédiens à tout corps local, d'autre part en donnant des résultats qui sont nouveaux même sur R. Par exemple, nous montrons que sous des hypothèses naturelles sur la marche aléatoire, les composantes suivant K de M_n dans la décomposition KAK deviennent asymptotiquement indépendantes avec vitesse exponentielle. Dans la deuxième partie de la thèse, nous utilisons ces résultats pour étudier la transience des sous-variétés des groupes algébriques. Un de nos résultats peut être formulé comme suit: soient H un sous-groupe non élémentaire de SL_2(R), une probabilité adaptée sur H ayant un moment exponentiel, alors pour toute sous-variété algébrique propre V de SL_2(R), la probabilité que la marche aléatoire appartienne à V décroit exponentiellement vite vers zéro. Par conséquent, la sous-variété algébrique V est transiente pour la marche aléatoire. Nous généralisons cet énoncé au cas ou la marche aléatoire est adaptée sur un groupe Zariski dense des points réels d'un groupe algébrique défini et déployé sur R. Ces résultats sont à comparer avec des travaux récents de Kowalski et de Rivin.
|
9 |
Convergence abrupte et métastabilitéBertoncini, Olivier 29 November 2007 (has links) (PDF)
Le but de cette thèse est de relier deux phénomènes relatifs au comportement asymptotique des processus stochastiques, qui jusqu'à présent étaient restés dissociés. La convergence abrupte ou phénomène de cutoff d'une part, et la métastabilité d'autre part. Dans le cas du cutoff, une convergence abrupte vers la mesure d'équilibre du processus a lieu à un instant que l'on peut déterminer, alors que la métastabilité est liée à une grande incertitude sur l'instant où l'on va sortir d'un certain équilibre. On propose un cadre commun pour étudier et comparer les deux phénomènes : celui des chaînes de naissance et de mort à temps discret sur $\mathbb{N}$, avec une dérive vers zéro.<br />On montre que sous l'hypothèse de dérive il y a convergence abrupte vers zéro et métastabilité dans l'autre sens. De plus la dernière excursion dans la métastabilité est la renversée temporelle d'une trajectoire typique de cutoff.<br />On étend notre approche au modèle d'Ehrenfest, ce qui nous permet de montrer la convergence abrupte et la métastabilité sous une hypothèse de dérive plus faible.
|
10 |
Marches aléatoires et mot circulant, adaptativité et tolérance aux pannes dans les environnements distribués.Bernard, Thibault 08 December 2006 (has links) (PDF)
Nous proposons dans ces travaux une étude des marches aléatoires dans l'algorithmique distribuée pour les réseaux dynamiques. Nous montrons dans un premier temps que les marches aléatoires sont un outil viable pour la conception d'algorithmes distribués. Ces <br />algorithmes reposent principalement sur les trois propriétés fondamentales des marches aléatoires (Percussion, Couverture, Rencontre). Nous fournissons une méthode qui évalue <br />le temps ́ecoulé avant que ces trois propriétés soient vérifiées. Cela nous permet d'évaluer de la complexité de nos algorithmes. Dans un second temps, nous proposons l'utilisation d'un jeton circulant aléatoirement sous forme de mot circulant afin de collecter sur ce jeton des informations topologiques. Ces informations permettent la construction et la maintenance d'une structure couvrante du réseau de communication. Ensuite, nous <br />avons utilisé cette structure pour concevoir un algorithme de circulation de jeton tolérant aux pannes pour les environnements dynamiques. Cet algorithme a la particularité d'être complètement décentralisé. Nous proposons dans un dernier temps d'adapter notre circulation de jeton pour proposer une solution au problème d'allocation de ressources dans les réseaux ad-hoc.
|
Page generated in 0.0594 seconds