• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • Tagged with
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fiabilité des systèmes embarqués

Voiculescu, Sorin 03 July 2009 (has links) (PDF)
Les travaux présentés dans cette thèse abordent la problématique de l'estimation de la fiabilité des systèmes qui est devenue un enjeu majeur pour les entreprises et ce dès les premières phases de développement. En effet, plus tôt les caractéristiques d'un produit ou d'un système sont appréhendées dans son cycle de vie et moins les risques ( financiers ou liés à la sécurité des installations ), dus à la non réalisation des performances attendues sont élevés. Dans un contexte exigeant des systèmes de plus en plus fiables et sûrs, et de durées de garanties croissantes, il est impératif de vérifier le plus rapidement possible que les performances des systèmes soient conformes au cahier des charges. La démarche idéale pour identifier la fiabilité d'un produit ou d'un système avant sa fabrication en série, est de procéder à des séries d'essais sur des prototypes, quand ils existent. Cette démarche nécessite un investissement trop important en temps en nombre de prototypes, car ces derniers étant de plus en plus fiables, l'observation de défaillances est de moins en moins probable .
2

Étude asymptotique des processus de branchement sur-critiques en environnement aléatoire / Asymptotic study for supercritical branching processes in a random environment

Miqueu, Éric 09 December 2016 (has links)
L’objet de cette thèse concerne l’étude asymptotique des processus de branchement sur-critiques en environnement aléatoire, qui sont une généralisation du processus de Galton-Watson, avec une loi de reproduction choisie aléatoirement et de manière i.i.d. suivant les générations. Dans le cas de non extinction, nous démontrons une succession de résultats asymptotiques plus fins que ceux établis dans des travaux antérieurs. Le chapitre 1 est consacré à l’étude de l’écart relatif entre le processus (Zn) normalisé et la loi normale. Nous établissons une borne de type Berry-Esseen ainsi qu’un développement pour des déviations de type Cramér, généralisant ainsi le théorème central limite et le principe des déviations modérées établis précédemment dans la littérature. Le second chapitre concerne l'asymptotique de la distribution du processus (Zn) ainsi que le moment harmonique critique de la variable limite W de la population normalisée. Nous établissons un équivalent de l'asymptotique de la distribution du processus Zn et donnons une caractérisation des constantes via une équation fonctionnelle similaire au cas du processus de Galton-Watson. Dans le cas des processus de branchement en environnement aléatoire, les résultats améliorent l'équivalent asymptotique de la distribution de Zn établi dans des travaux antérieurs sous normalisation logarithmique, sous la condition que chaque individu donne naissance à au moins un individu. Nous déterminons aussi la valeur critique pour l'existence du moment harmonique de W sous des conditions simples d'existence de moments, qui sont bien plus faibles que les hypothèses imposées dans la littérature, et généralisons le résultat à Z_0=k individus initiaux. Le troisième chapitre est consacré à l'étude de l'asymptotique des moments harmoniques d'ordre r>0 de Zn. Nous établissons un équivalent et donnons une expression des constantes. Le résultat met en évidence un phénomène de transition de phase, relié aux transitions de phase des grandes déviations inférieures du processus (Zn). En application de ce résultat, nous établissons un résultat de grandes déviations inférieures pour le processus (Zn) sous des hypothèses plus faibles que celles imposées dans des travaux précédents. Nous améliorons également la vitesse de convergence dans un théorème central limite vérifié par W_n-W, et déterminons l'asymptotique de la probabilité de grandes déviations pour le ratio Zn+1/Z_n. / The purpose of this Ph.D. thesis is the study of branching processes in a random environment, say (Z_n), which are a generalization of the Galton-Watson process, with the reproduction law chosen randomly in each generation in an i.i.d. manner. We consider the case of a supercritical process, assuming the condition that each individual gives birth to at least one child. The first part of this work is devoted to the study of the relative and absolute distance between the normalized process log Z_n and the normal law. We show a Berry-Esseen bound and establish a Cramér type large deviation expansion, which generalize the central limit theorem and the moderate deviation principle established for log Z_n in previous studies.In the second chapter we study the asymptotic of the distribution of Z_n, and the critical value for the existence of harmonic moments of the limit variable W of the normalized population size. We give an equivalent of the asymptotic distribution of Z_n and characterize the constants by a functional relation which is similar to that obtained for a Galton-Watson process. For a branching process in a random environment, our result generalizes the equivalent of the asymptotic distribution of Z_n established in a previous work in a log-scale, under the condition that each individual gives birth to at least one child. We also characterize the critical value for the existence of harmonic moments of the limit variable W under weaker conditions that in previous studies and generalize this result for processes starting with Z_0=k initial individuals. The third chapter is devoted to the study of the asymptotic of the harmonic moments of order r>0 of Z_n. We show the exact decay rate and give an expression of the limiting constants. The result reveals a phase transition phenomenon which is linked to the phase transitions in the lower large deviations established in earlier studies. As an application, we improve a lower large deviation result for the process (Z_n) under weaker hypothesis than those stated in the literature. Moreover, we also improve the rate of convergence in a central limit theorem for W-W_n and give the asymptotic of the large deviation for the ratio Zn+1/Z_n.
3

Les théorèmes limites pour des processus stationnaires

Lam, Hoang Chuong 25 June 2012 (has links) (PDF)
Nous étudions la mesure spectrale des transformations stationnaires, puis nous l'utilisons pour étudier le théorème ergodique et le théorème limite central. Nous étudions également les martingales avec une nouvelle preuve du théorème central limite, sans analyse de Fourier. Pour le théorème limite central pour marches aléatoires dans un environnement aléatoire sur la dimension 1, on donne deux méthodes pour l'obtenir: approximation pour une martingale et méthode des moments. La méthode des martingales fait résoudre l'equation de Dirichlet (I −P )h = 0, alors que celle des moments résoudre l'equation de Poisson (I − P )h = f . Enfin, nous pouvons utiliser la deuxième méthode pour prouver la relation d'Einstein pour des diffusions réversibles dans un environnement aléatoire dans une dimension.
4

Problèmes de diffusion pour des chaînes d'oscillateurs harmoniques perturbées

Simon, Marielle 17 June 2014 (has links) (PDF)
L'équation de la chaleur est un phénomène macroscopique, émergeant après une limite d'échelle diffusive (en espace et en temps) d'un système d'oscillateurs couplés. Lorsque les interactions entre oscillateurs sont linéaires, l'énergie évolue de manière balistique, et la conductivité thermique est infinie. Certaines non-linéarités doivent donc apparaître au niveau microscopique, si l'on espère observer une diffusion normale. Pour apporter de l'ergodicité, on ajoute à la dynamique déterministe une perturbation stochastique qui conserve l'énergie. En premier lieu nous étudions la dynamique Hamiltonienne d'un système d'oscillateurs linéaires, perturbé par un bruit stochastique dégénéré conservatif. Ce dernier transforme à des temps aléatoires les vitesses en leurs opposées. On montre que l'évolution macroscopique du système est caractérisée par un système parabolique non-linéaire couplé pour les deux lois de conservation du modèle. Ensuite, nous supposons que les oscillateurs évoluent en environnement aléatoire. La perturbation stochastique est très dégénérée, et on prouve que le champ de fluctuations de l'énergie à l'équilibre converge vers un processus d'Ornstein-Uhlenbeck généralisé dirigé par l'équation de la chaleur.Il est désormais connu que les systèmes unidimensionnels présentent une diffusion anormale lorsque le moment total est conservé en plus de l'énergie. Dans une troisième partie, on considère deux perturbations, l'une préservant le moment, l'autre détruisant cette conservation. En faisant décroître l'intensité de la seconde perturbation, on observe une transition de phase entre un régime de diffusion normale et un régime de superdiffusion.
5

Polymères Dirigés et Réseaux Conducteurs de Chaleur - Systèmes de mécanique statistique à l'équilibre et hors équilibre

Camanes, Alain 02 December 2008 (has links) (PDF)
Dans cette thèse, nous étudions deux exemples issus de la mécanique statistique. Les polymères dirigés en environnement aléatoire sont un modèle de système se trouvant à l'état d'équilibre. Nous donnons un critère de comparaison entre les entropies du réseau et de l'environnement permettant d'améliorer la borne inférieure sur la température critique. Nous utilisons également certains résultats connus dans le cadre de l'équation d'Anderson parabolique pour obtenir le comportement asymptotique de l'énergie libre. Par ailleurs, nous utilisons les polymères dirigés pour donner une preuve simple de l'indépendance de la fonction de Lyapunov de l'équation d'Anderson parabolique par rapport à la condition initiale.<br /><br />Les réseaux conducteurs de chaleur sont étudiés hors équilibre. Lorsque les potentiels d'interaction sont harmoniques, nous donnons une interprétation géométrique de la condition d'existence et d'unicité de la mesure invariante via un théorème de complétude. Dans le cas où cette condition fait défaut, nous explicitons une quantité invariante par le flot hamiltonien. Nous généralisons ensuite les résultats d'unicité à des potentiels analytiques. Nous montrons que la condition de Hörmander est suffisante pour avoir l'unicité de la mesure invariante via la contrôlabilité. Le principe de Lasalle est ensuite utilisé pour montrer l'unicité sans la condition d'Hörmander. Nous évoquons également le problème de l'existence de telles mesures.
6

Problèmes de diffusion pour des chaînes d’oscillateurs harmoniques perturbées / Diffusion problems for perturbed harmonic chains

Simon, Marielle 17 June 2014 (has links)
L'équation de la chaleur est un phénomène macroscopique, émergeant après une limite d’échelle diffusive (en espace et en temps) d’un système d'oscillateurs couplés. Lorsque les interactions entre oscillateurs sont linéaires, l'énergie évolue de manière balistique, et la conductivité thermique est infinie. Certaines non-linéarités doivent donc apparaître au niveau microscopique, si l’on espère observer une diffusion normale. Pour apporter de l'ergodicité, on ajoute à la dynamique déterministe une perturbation stochastique qui conserve l'énergie. En premier lieu nous étudions la dynamique Hamiltonienne d'un système d'oscillateurs linéaires, perturbé par un bruit stochastique dégénéré conservatif. Ce dernier transforme à des temps aléatoires les vitesses en leurs opposées. On montre que l'évolution macroscopique du système est caractérisée par un système parabolique non-linéaire couplé pour les deux lois de conservation du modèle. Ensuite, nous supposons que les oscillateurs évoluent en environnement aléatoire. La perturbation stochastique est très dégénérée, et on prouve que le champ de fluctuations de l'énergie à l'équilibre converge vers un processus d'Ornstein-Uhlenbeck généralisé dirigé par l’équation de la chaleur.Il est désormais connu que les systèmes unidimensionnels présentent une diffusion anormale lorsque le moment total est conservé en plus de l'énergie. Dans une troisième partie, on considère deux perturbations, l'une préservant le moment, l'autre détruisant cette conservation. En faisant décroître l'intensité de la seconde perturbation, on observe une transition de phase entre un régime de diffusion normale et un régime de superdiffusion. / The heat equation is known to be a macroscopic phenomenon, emerging after a diffusive rescaling of space and time. In linear systems of interacting oscillators, the energy ballistically disperses and the thermal conductivity is infinite. Since the Fourier law is not valid for linear interactions, non-linearities in the microscopic dynamics are needed. In order to bring ergodicity to the system, we superpose a stochastic energy conserving perturbation to the underlying deterministic dynamics.In the first part we study the Hamiltonian dynamics of linear coupled oscillators, which are perturbed by a degenerate conservative stochastic noise. The latter flips the sign of the velocities at random times. The evolution yields two conservation laws (the energy and the length of the chain), and the macroscopic behavior is given by a non-linear parabolic system.Then, we suppose the harmonic oscillators to evolve in a random environment, in addition to be stochastically perturbed. The noise is very degenerate, and we prove a macroscopic behavior that holds at equilibrium: precisely, energy fluctuations at equilibrium evolve according to an infinite dimensional Ornstein-Uhlenbeck process driven by the linearized heat equation.Finally, anomalous behaviors have been observed for one-dimensional systems which preserve momentum in addition to the energy. In the third part, we consider two different perturbations, the first one preserving the momentum, and the second one destroying that new conservation law. When the intensity of the second noise is decreasing, we observe (in a suitable time scale) a phase transition between a regime of normal diffusion and a regime of super-diffusion.
7

Marches aléatoires branchantes, temps inhomogène, sélection / Branching random walks, time-inhomogeneous environment, selection

Mallein, Bastien 01 July 2015 (has links)
On s'intéresse dans cette thèse au modèle de la marche aléatoire branchante, un système de particules qui évoluent au court du temps en se déplaçant et se reproduisant de façon indépendante. Le but est d'étudier le rythme auquel ces particules se déplacent, dans deux variantes particulières de marches aléatoires branchantes. Dans la première variante, la façon dont les individus se déplacent et se reproduisent dépend du temps. Ce modèle a été introduit par Fang et Zeitouni en 2010. Nous nous intéresserons à trois types de dépendance en temps : une brusque modification du mécanisme de reproduction des individus après un temps long ; une lente évolution de ce mécanisme à une échelle macroscopique ; et des fluctuations aléatoires à chaque génération. Dans la seconde variante, le mécanisme de reproduction est constant, mais les individus subissent un processus de sélection darwinien. La position d'un individu est interprétée comme son degré d'adaptation au milieu, et le déplacement d'un enfant par rapport à son parent représente l'héritage des gènes. Dans un tel processus, la taille maximale de la population est fixée à une certaine constante N, et à chaque étape, seuls les N plus à droite sont conservés. Ce modèle a été introduit par Brunet, Derrida, Mueller et Munier, et étudié par Bérard et Gouéré en 2010. Nous nous sommes intéressés dans un premier temps à une variante de ce modèle, qui autorise quelques grands sauts. Dans un second temps, nous avons considéré que la taille totale N de la population dépend du temps. / In this thesis, we take interest in the branching random walk, a particles system, in which particles move and reproduce independently. The aim is to study the rhythm at which these particles invade their environment, a quantity which often reveals information on the past of the extremal individuals. We take care of two particular variants of branching random walk, that we describe below.In the first variant, the way individuals behave evolves with time. This model has been introduced by Fang and Zeitouni in 2010. This time-dependence can be a slow evolution of the reproduction mechanism of individuals, at macroscopic scale, in which case the maximal displacement is obtained through the resolution of a convex optimization problem. A second kind of time-dependence is to sample at random, at each generation, the way individuals behave. This model has been introduced and studied in an article in collaboration with Piotr Mi\l{}os.In the second variant, individuals endure a Darwinian selection mechanism. The position of an individual is understood as its fitness, and the displacement of a child with respect to its parent is associated to the process of heredity. In such a process, the total size of the population is fixed to some integer N, and at each step, only the N fittest individuals survive. This model was introduced by Brunet, Derrida, Mueller and Munier. In a first time, we took interest in a mechanism of reproduction which authorises some large jumps. In the second model we considered, the total size N of the population may depend on time.
8

Modèles de dynamique des populations dans un environnement aléatoire / Models of populations dynamic in a random environment

Ed-Darraz, Abdelkarim 20 November 2015 (has links)
Les travaux réalisés dans cette thèse abordent certaines questions relatives à la dynamique des populations dans un environnement aléatoire. L'environnement aléatoire est décrit par un processus Markovien à valeurs dans un espace fini et qui, en appliquant certaines forces sur le choix des taux vitaux, dirigera la dynamique de la population. Lorsque la dynamique est modélisée par un processus de naissance et de mort, on répondra à la question : quand est-ce qu'on a une extinction presque sûre d'une population ? (Bacaër and EdDarraz, 2014). Lorsque la dynamique est déterministe, nous avons démontré un résultat bien connu pour la taille finale d'une épidémie (Ed-Darraz and Khaladi, 2015) Bacaër N, Ed-Darraz A (2014) On linear birth-and-death processes in a random environment. J Math Biol. 69 (1) :73-90 Ed-Darraz A, Khaladi M (2015) On the final epidemic size in random environnement, Math. Biosc 266 : 10-14. / This thesis addresses some issues associated with population dynamics in random environment. Random environment is described by a Markov process with values in a finite space and which, involve certain forces on the choice of vital rates, will lead the population dynamics. When the dynamic is modeled by a birth and death process, we will answer the question : When almost surely extinction settled ? (Bacaër and Ed-Darraz, 2014). In (Ed-Darraz and Khaladi, 2015) we are interested to the final size of an epidemic in random environment. J Math Biol. 69 (1) :73-90 Ed-Darraz A, Khaladi M (2015) On the final epidemic size in random environnement, Math. Biosc 266 : 10-14.
9

Les Théorèmes limites pour des processus stationnaires / Limit theorems for stationary processes

Lam, Hoang Chuong 25 June 2012 (has links)
Nous étudions la mesure spectrale des transformations stationnaires, puis nous l’utilisons pour étudier le théorème ergodique et le théorème limite central. Nous étudions également les martingales avec une nouvelle preuve du théorème central limite, sans analyse de Fourier. Pour le théorème limite central pour marches aléatoires dans un environnement aléatoire sur la dimension 1, on donne deux méthodes pour l’obtenir: approximation pour une martingale et méthode des moments. La méthode des martingales fait résoudre l’équation de Dirichlet (I - P)h = 0, alors que celle des moments résoudre l’équation de Poisson (I - P)h = f. Enfin, nous pouvons utiliser la deuxième méthode pour prouver la relation d’Einstein pour des diffusions réversibles dans un environnement aléatoire dans une dimension. / We study the spectral measure for stationary transformations, and then apply to Ergodic theorem and Central limit theorem. We study also martingale process with a new proof of the central limit theorem without Fourier analysis. For the central limit theorem for random walks in random environment, we give two methods to obtain it: martingale approximation and moments. The method of martingales solves Dirichlet’s equation (I - P)h = 0, and the method of moments solves Poisson’s equation (I - P)h = f. Finally, we can use the second method to prove the Einstein relation for reversible diffusions in random environment in one dimension.

Page generated in 0.0744 seconds