Spelling suggestions: "subject:"mouvement para courbe moyenne"" "subject:"mouvement para courbes moyenne""
1 |
Contribution à l'analyse d'équations aux dérivées partielles <br />décrivant le mouvement de fronts avec applications<br />à la dynamique des dislocations.Forcadel, Nicolas 02 July 2007 (has links) (PDF)
Ce travail porte sur la modélisation, l'analyse et l'analyse numérique de la dynamique des dislocations ainsi que sur les liens très forts qui existent avec les mouvements de type mouvement par courbure moyenne. Les dislocations sont des défauts linéaires qui se déplacent dans les cristaux lorsque ceux-ci sont soumis à des contraintes extérieures. D'une manière générale, la dynamique d'une ligne de dislocation est décrite par une équation eikonale où la vitesse dépend de manière non locale de l'ensemble de la ligne. Il est également possible d'ajouter un terme de courbure moyenne dans la modélisation. <br /><br />La première partie de ce mémoire est consacrée aux propriétés qualitatives de la dynamique d'une ligne de dislocation (existence, unicité, comportement asymptotique...). Cette étude repose en grande partie sur la théorie des solutions de viscosité. On propose également plusieurs schémas numériques pour cette dynamique et on montre leur convergence ainsi que des estimations d'erreurs entre la solution et son approximation numérique.<br /><br />Dans une seconde partie nous faisons le lien entre la dynamique d'un nombre fini de dislocations et la dynamique de densité de dislocations en montrant des résultats d'homogénéisation. Nous étudions également, de manière théorique et numérique, un modèle pour la dynamique de densité de dislocations.
|
2 |
Instabilités de forme en croissance cristallineBrassel, Morgan 23 October 2008 (has links) (PDF)
Les circuits intégrés des puces électroniques sont gravés sur des films minces semi-conducteurs fabriqués par hétéro-épitaxie. Nous nous intéressons aux instabilités morphologiques qui peuvent apparaître au cours de la croissance de ces films.<br /><br />Du point de vue de la modélisation, les problèmes rencontrés en croissance cristalline sont essentiellement des problèmes de mouvement d'interfaces. Nous abordons le cas particulier du mouvement par courbure moyenne, ainsi que son approximation par la méthode de champ de phase via l'équation d'Allen-Cahn. La discrétisation par éléments finis que nous proposons permet de couvrir de nombreuses variantes de l'équation : conservation du volume, termes de forçage, anisotropie.<br /><br />Nous menons ensuite l'étude numérique d'un modèle variationnel de l'instabilité de Grinfeld. Celui-ci combine croissance cristalline et interactions élastiques, en couplant une équation d'Allen-Cahn à un système d'élasticité linéarisée pour le film. Une extension du modèle permet de prendre en compte le comportement élastique du substrat.<br /><br />Nous proposons, par ailleurs, un modèle de champ de phase pour l'étude de l'instabilité liée à la mise en paquet de marches en surface du film. L'étude numérique de ce modèle s'appuie sur un algorithme inspiré des techniques de recuit simulé. Celui-ci permet d'envisager la méthode de champ de phase comme un outil d'optimisation globale.
|
3 |
Dynamique stochastique d'interface discrète et modèles de dimèresLaslier, Benoît 02 July 2014 (has links) (PDF)
Nous avons étudié la dynamique de Glauber sur les pavages de domaines finies du plan par des losanges ou par des dominos de taille 2 × 1. Ces pavages sont naturellement associés à des surfaces de R^3, qui peuvent être vues comme des interfaces dans des modèles de physique statistique. En particulier les pavages par des losanges correspondent au modèle d'Ising tridimensionnel à température nulle. Plus précisément les pavages d'un domaine sont en bijection avec les configurations d'Ising vérifiant certaines conditions au bord (dépendant du domaine pavé). Ces conditions forcent la coexistence des phases + et - ainsi que la position du bord de l'interface. Dans la limite thermodynamique où L, la longueur caractéristique du système, tend vers l'infini, ces interfaces obéissent à une loi des grand nombre et convergent vers une forme limite déterministe ne dépendant que des conditions aux bord. Dans le cas où la forme limite est planaire et pour les losanges, Caputo, Martinelli et Toninelli [CMT12] ont montré que le temps de mélange Tmix de la dynamique est d'ordre O(L^{2+o(1)}) (scaling diffusif). Nous avons généralisé ce résultat aux pavages par des dominos, toujours dans le cas d'une forme limite planaire. Nous avons aussi prouvé une borne inférieure Tmix ≥ cL^2 qui améliore d'un facteur log le résultat de [CMT12]. Dans le cas où la forme limite n'est pas planaire, elle peut être analytique ou bien contenir des parties "gelées" où elle est en un sens dégénérée. Dans le cas où elle n'a pas de telle partie gelée, et pour les pavages par des losanges, nous avons montré que la dynamique de Glauber devient "macroscopiquement proche" de l'équilibre en un temps L^{2+o(1)}
|
4 |
Vortex et données non bornées pour les équations de Ginzburg-Landau paraboliques / Vortices and unbounded data for the parabolic Ginzburg-Landau equationsCôte, Delphine 23 January 2015 (has links)
Nous nous intéressons dans ce mémoire à des équations d'évolution associées aux fonctionnelles de Ginzburg-Landau, de nature parabolique. Notre but est de décrire le comportement temporel de la limite des solutions quand un petit paramètre de pénalisation tend vers 0.Dans le premier chapitre, nous retraçons de manière synthétique l'étude remarquable due à Bethuel, Orlandi et Smets sur l'équation de Ginzburg-Landau parabolique en dimension 2 : l'évolution des points vortex est gouvernée par le flot gradient de la fonctionnelle de Kirchoff-Onsager modifié par un terme de drift; elle est régulière hors des temps de collision ou de séparation de vortex ;ces phénomènes sont soumis à la conservation du degré local et à la dissipation d'énergie.Dans le second chapitre, nous considérons le problème de Cauchy pour des systèmes d'équations paraboliques semi-linéaires. Motivés par l'exemple des vortex, nous construisons, pour des nonlinéarités défocalisantes, des solutions globales de l'équation intégrale associée ayant des données initiales non bornées en espace (croissant comme exp(x^2)). Dans le cas de nonlinéarités focalisantes, nous montrons un phénomène d'explosion instantanée.Dans le troisième chapitre, nous revenons à l'équation de Ginzburg-Landau parabolique en dimension quelconque. Nous remplaçons la borne sur l'énergie de Bethuel, Orlandi et Smets, par une borne locale en espace, qui permet de traiter des configurations générales de vortex sans avoir recours aux « vortex évanescents ». Nous étendons leur analyse, et montrons des résultats de décomposition de l'énergie renormalisée, et du mouvement par courbure moyenne de la mesure d'énergie concentrée. / We are interested in this thesis in evolution equations related to the Ginzburg-Landau functionals, of parabolic nature. Our goal is to describe the temporal behavior of limiting solutions as a small penalisation parameter tends to 0.In the first chapter, we retrace in a synthetic way the remarkable study by Bethuel, Orlandi and Smets on the parabolic Ginzburg-Landau equation in dimension 2 : the evolution of point vortices is governed by the gradient flow of the Kirchoff-Onsager functionnal modified by a drift term ; it is smooth away from the merging and splitting times ; these phenomenon are subject to conservation of the local degree and energy dissipation.In the second chapter, we consider the Cauchy problem for systems of semi-linear parabolic equations. Motivated by the example of the vortices, we construct, for defocusing nonlinearities, global solutions to the associated integral equation with intial data unbounded in space (allowed to grow like exp(x^2)). In the case of focusing nonlinearities, we show a phenomenon of instantaneous blow-up.In the third chapter, we go back to the parabolic Ginzburg-Landau equation. We replace the energy bound of Bethuel, Orlandi et Smets by a local-in-space bound on the energy. This allows to consider general configurations of vortices without the help of « vanishing vortices ». We extend their analysis, and show various results of decomposition of the renormalized energy, and that the concentrated energy moves according to the mean curvature flow.
|
5 |
Dynamique stochastique d’interface discrète et modèles de dimères / Stochastic dynamics of discrete interface and dimer modelsLaslier, Benoît 02 July 2014 (has links)
Nous avons étudié la dynamique de Glauber sur les pavages de domaines finies du plan par des losanges ou par des dominos de taille 2 × 1. Ces pavages sont naturellement associés à des surfaces de R^3, qui peuvent être vues comme des interfaces dans des modèles de physique statistique. En particulier les pavages par des losanges correspondent au modèle d'Ising tridimensionnel à température nulle. Plus précisément les pavages d'un domaine sont en bijection avec les configurations d'Ising vérifiant certaines conditions au bord (dépendant du domaine pavé). Ces conditions forcent la coexistence des phases + et - ainsi que la position du bord de l'interface. Dans la limite thermodynamique où L, la longueur caractéristique du système, tend vers l'infini, ces interfaces obéissent à une loi des grand nombre et convergent vers une forme limite déterministe ne dépendant que des conditions aux bord. Dans le cas où la forme limite est planaire et pour les losanges, Caputo, Martinelli et Toninelli [CMT12] ont montré que le temps de mélange Tmix de la dynamique est d'ordre O(L^{2+o(1)}) (scaling diffusif). Nous avons généralisé ce résultat aux pavages par des dominos, toujours dans le cas d'une forme limite planaire. Nous avons aussi prouvé une borne inférieure Tmix ≥ cL^2 qui améliore d'un facteur log le résultat de [CMT12]. Dans le cas où la forme limite n'est pas planaire, elle peut être analytique ou bien contenir des parties “gelées” où elle est en un sens dégénérée. Dans le cas où elle n'a pas de telle partie gelée, et pour les pavages par des losanges, nous avons montré que la dynamique de Glauber devient “macroscopiquement proche” de l'équilibre en un temps L^{2+o(1)} / We studied the Glauber dynamics on tilings of finite regions of the plane by lozenges or 2 × 1 dominoes. These tilings are naturally associated with surfaces of R^3, which can be seen as interfaces in statistical physics models. In particular, lozenge tilings correspond to three dimensional Ising model at zero temperature. More precisely, tilings of a finite regions are in bijection with Ising configurations with some boundary conditions (depending on the tiled domain). These boundary conditions impose the coexistence of the + and - phases, together with the position of the boundary of the interface. In the thermodynamic limit where L, the characteristic length of the system, tends toward infinity, these interface follow a law of large number and converge to a deterministic limit shape depending only on the boundary condition. When the limit shape is planar and for lozenge tilings, Caputo, Martinelli and Toninelli [CMT12] showed that the mixing time of the dynamics is of order (L^{2+o(1)}) (diffusive scaling). We generalized this result to domino tilings, always in the case of a planar limit shape. We also proved a lower bound Tmix ≥ cL^2 which improve on the result of [CMT12] by a log factor. When the limit shape is not planar, it can either be analytic or have some “frozen” domains where it is degenerated in a sense. When it does not have such frozen region, and for lozenge tilings, we showed that the Glauber dynamics becomes “macroscopically close” to equilibrium in a time L^{2+o(1)}
|
6 |
Modélisation numérique de la dynamique des globules rouges par la méthode des fonctions de niveauLaadhari, Aymen 06 April 2011 (has links) (PDF)
Ce travail, à l'interface entre les mathématiques appliquées et la physique, s'articule autour de la modélisation numérique des vésicules biologiques, un modéle pour les globules rouges du sang. Pour cela, le modéle de Canham et Helfrich est adopté pour décrire le comportement des vésicules. La modélisation numérique utilise la méthode des fonctions de niveau dans un cadre éléments finis. Un nouvel algorithme de résolution numérique combinant une technique de multiplicateurs de Lagrange avec une adaptation automatique de maillages garantit la conservation exacte des volumes et des surfaces. Cet algorithme permet donc de dépasser une limitation cruciale actuelle de la méthode des fonctions de niveau, à savoir les pertes de masse couramment observées dans ce type de problémes. De plus, les propriétés de convergence de la méthode des fonctions de niveau se trouvent ainsi grandement améliorées, comme l'indiquent de nombreux tests numériques. Ces tests comprennent notamment des problémes d'advection élémentaires, des mouvements par courbure moyenne ainsi que des mouvements par diffusion de surface. Concernant l'équilibre statique des vésicules, une condition générale d'équilibre d'Euler-Lagrange est obtenue à l'aide d'outils de dérivation de forme. En dynamique, le mouvement d'une vésicule sous l'action d'un écoulement de cisaillement est étudié dans le cadre des nombres de Reynolds élevés. L'effet du confinement est considéré, et les régimes classiques de chenille de char et de basculement sont retrouvés. Finalement, pour la premiére fois, l'effet des termes inertiels est étudié et on montre qu'au delà d'une valeur critique du nombre de Reynolds, la vésicule passe d'un mouvement de basculement à un mouvement de chenille de char.
|
7 |
Modélisation numérique de la dynamique des globules rouges par la méthode des fonctions de niveau / Numerical modelling of the dynamics of red blood cells using the level set methodLaadhari, Aymen 06 April 2011 (has links)
Ce travail, à l'interface entre les mathématiques appliquées et la physique, s'articule autour de la modélisation numérique des vésicules biologiques, un modéle pour les globules rouges du sang. Pour cela, le modéle de Canham et Helfrich est adopté pour décrire le comportement des vésicules. La modélisation numérique utilise la méthode des fonctions de niveau dans un cadre éléments finis. Un nouvel algorithme de résolution numérique combinant une technique de multiplicateurs de Lagrange avec une adaptation automatique de maillages garantit la conservation exacte des volumes et des surfaces. Cet algorithme permet donc de dépasser une limitation cruciale actuelle de la méthode des fonctions de niveau, à savoir les pertes de masse couramment observées dans ce type de problémes. De plus, les propriétés de convergence de la méthode des fonctions de niveau se trouvent ainsi grandement améliorées, comme l'indiquent de nombreux tests numériques. Ces tests comprennent notamment des problémes d'advection élémentaires, des mouvements par courbure moyenne ainsi que des mouvements par diffusion de surface. Concernant l'équilibre statique des vésicules, une condition générale d'équilibre d'Euler-Lagrange est obtenue à l'aide d'outils de dérivation de forme. En dynamique, le mouvement d'une vésicule sous l'action d'un écoulement de cisaillement est étudié dans le cadre des nombres de Reynolds élevés. L'effet du confinement est considéré, et les régimes classiques de chenille de char et de basculement sont retrouvés. Finalement, pour la premiére fois, l'effet des termes inertiels est étudié et on montre qu'au delà d'une valeur critique du nombre de Reynolds, la vésicule passe d'un mouvement de basculement à un mouvement de chenille de char. / This work, at the interface between the Applied Mathematics and Physics is connected about the numerical modelisation of biological vesicles, a pattern for the red blood cells. For this reason, the pattern of Canham and Helfrich is adopted to describe the behaviour of the vesicles. The numerical modelisation uses the Level Set method in finite element framework. A new algorithm of numerical resolution combining one technique of Lagrange multipliers with an automatic mesh adaptation ensures the accurate conservation of volumes and surfaces. Thus this algorithm enables to exceed an existing crucial restriction of the Level Set method, that's to say, the wastes of mass usually noticed in this kind of problems. Moreover, the proprieties of convergence of the Level Set method are thus much more improved, as shown in many numerical tests. Those tests chiefly include elementary problems of advection, motions by mean curvature just as motions by spread of surface. Concerning the static equilibrum of the vesicles, a mechanical equilibrum equation (Euler-Lagrange equation) of a vesicle membrane under a generalized elastic bending energy is obtained and the approach is based on shape optimization tools. In dynamics, the motion of a vesicle under the effect of a shear flow is elaborated in the frames of reference of high Reynolds numbers. The effect of confinement is respected, and the standard regimes of tank-treading and of tumbling motion are found again. Finally, for the first time, the effect of the inertia terms is elaborated and we show that beyond a critical value of the number of Reynolds the vesicle passes from a tumbling motion to a tank-treading motion.
|
Page generated in 0.0732 seconds