• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulação de membranas viscosas / Simulation of viscous membranes

Tasso, Italo Valença Mariotti 20 August 2013 (has links)
A simulação computacional de membranas biológicas, em particular membranas formadas por bicamadas lipídicas, é uma área de grande interesse na atualidade. Enquanto simulações moleculares são bastante populares, a simulação na escala de uma célula inteira requer modelos baseados na mecânica dos meios contínuos. Essas membranas apresentam um comportamento de fluido viscoso incompressível bidimensional. Além disso, as formas de equilíbrio são bem explicadas pela energia de Canham-Helfrich, que depende da curvatura da membrana. Neste trabalho, um novo método de simulação de membranas viscosas, baseado em elementos finitos, é apresentado. Ele se inspira no conceito de James Clerk Maxwell de elasticidade fugaz, o qual é usado para adaptar técnicas bem estabelecidas de simulação de membranas elásticas. Trata-se do primeiro método a levar em conta, de maneira rigorosa, o aspecto viscoso da membrana, que é dominante na escala de tamanho de uma célula biológica, além da sua característica de fluido incompressível / The computational simulation of biological membranes, in particular of those made of lipid bilayers, is currently an area of great interest. While molecular simulations are quite popular, the simulation on the scale of a whole cell requires models based on continuum mechanics. Those membranes behave like a bidimensional incompressible viscous fluid. Furthermore, the equilibrium shapes are well explained by means of the Canham-Helfrich energy, which depends on the curvature of the membrane. In this work, a novel finite element based method for the simulation of viscous membranes is presented. It is inspired by James Clerk Maxwells concept of fugitive elasticity, which is used to adapt well established simulation techniques for elastic membranes. This is the first method to take into account, in a rigorous fashion, the viscous aspect of the membrane, which is dominant at the length scale of a biological cell, in addition to its characteristics as an incompressible fluid
2

Simulação de membranas viscosas / Simulation of viscous membranes

Italo Valença Mariotti Tasso 20 August 2013 (has links)
A simulação computacional de membranas biológicas, em particular membranas formadas por bicamadas lipídicas, é uma área de grande interesse na atualidade. Enquanto simulações moleculares são bastante populares, a simulação na escala de uma célula inteira requer modelos baseados na mecânica dos meios contínuos. Essas membranas apresentam um comportamento de fluido viscoso incompressível bidimensional. Além disso, as formas de equilíbrio são bem explicadas pela energia de Canham-Helfrich, que depende da curvatura da membrana. Neste trabalho, um novo método de simulação de membranas viscosas, baseado em elementos finitos, é apresentado. Ele se inspira no conceito de James Clerk Maxwell de elasticidade fugaz, o qual é usado para adaptar técnicas bem estabelecidas de simulação de membranas elásticas. Trata-se do primeiro método a levar em conta, de maneira rigorosa, o aspecto viscoso da membrana, que é dominante na escala de tamanho de uma célula biológica, além da sua característica de fluido incompressível / The computational simulation of biological membranes, in particular of those made of lipid bilayers, is currently an area of great interest. While molecular simulations are quite popular, the simulation on the scale of a whole cell requires models based on continuum mechanics. Those membranes behave like a bidimensional incompressible viscous fluid. Furthermore, the equilibrium shapes are well explained by means of the Canham-Helfrich energy, which depends on the curvature of the membrane. In this work, a novel finite element based method for the simulation of viscous membranes is presented. It is inspired by James Clerk Maxwells concept of fugitive elasticity, which is used to adapt well established simulation techniques for elastic membranes. This is the first method to take into account, in a rigorous fashion, the viscous aspect of the membrane, which is dominant at the length scale of a biological cell, in addition to its characteristics as an incompressible fluid
3

Modélisation numérique de la dynamique des globules rouges par la méthode des fonctions de niveau / Numerical modelling of the dynamics of red blood cells using the level set method

Laadhari, Aymen 06 April 2011 (has links)
Ce travail, à l'interface entre les mathématiques appliquées et la physique, s'articule autour de la modélisation numérique des vésicules biologiques, un modéle pour les globules rouges du sang. Pour cela, le modéle de Canham et Helfrich est adopté pour décrire le comportement des vésicules. La modélisation numérique utilise la méthode des fonctions de niveau dans un cadre éléments finis. Un nouvel algorithme de résolution numérique combinant une technique de multiplicateurs de Lagrange avec une adaptation automatique de maillages garantit la conservation exacte des volumes et des surfaces. Cet algorithme permet donc de dépasser une limitation cruciale actuelle de la méthode des fonctions de niveau, à savoir les pertes de masse couramment observées dans ce type de problémes. De plus, les propriétés de convergence de la méthode des fonctions de niveau se trouvent ainsi grandement améliorées, comme l'indiquent de nombreux tests numériques. Ces tests comprennent notamment des problémes d'advection élémentaires, des mouvements par courbure moyenne ainsi que des mouvements par diffusion de surface. Concernant l'équilibre statique des vésicules, une condition générale d'équilibre d'Euler-Lagrange est obtenue à l'aide d'outils de dérivation de forme. En dynamique, le mouvement d'une vésicule sous l'action d'un écoulement de cisaillement est étudié dans le cadre des nombres de Reynolds élevés. L'effet du confinement est considéré, et les régimes classiques de chenille de char et de basculement sont retrouvés. Finalement, pour la premiére fois, l'effet des termes inertiels est étudié et on montre qu'au delà d'une valeur critique du nombre de Reynolds, la vésicule passe d'un mouvement de basculement à un mouvement de chenille de char. / This work, at the interface between the Applied Mathematics and Physics is connected about the numerical modelisation of biological vesicles, a pattern for the red blood cells. For this reason, the pattern of Canham and Helfrich is adopted to describe the behaviour of the vesicles. The numerical modelisation uses the Level Set method in finite element framework. A new algorithm of numerical resolution combining one technique of Lagrange multipliers with an automatic mesh adaptation ensures the accurate conservation of volumes and surfaces. Thus this algorithm enables to exceed an existing crucial restriction of the Level Set method, that's to say, the wastes of mass usually noticed in this kind of problems. Moreover, the proprieties of convergence of the Level Set method are thus much more improved, as shown in many numerical tests. Those tests chiefly include elementary problems of advection, motions by mean curvature just as motions by spread of surface. Concerning the static equilibrum of the vesicles, a mechanical equilibrum equation (Euler-Lagrange equation) of a vesicle membrane under a generalized elastic bending energy is obtained and the approach is based on shape optimization tools. In dynamics, the motion of a vesicle under the effect of a shear flow is elaborated in the frames of reference of high Reynolds numbers. The effect of confinement is respected, and the standard regimes of tank-treading and of tumbling motion are found again. Finally, for the first time, the effect of the inertia terms is elaborated and we show that beyond a critical value of the number of Reynolds the vesicle passes from a tumbling motion to a tank-treading motion.
4

Tratamento numérico da mecânica de interfaces lipídicas: modelagem e simulação / A numerical approach to the mechanics of lipid interfaces: modeling and simulation

Rodrigues, Diego Samuel 04 September 2015 (has links)
A mecânica celular jaz nas propriedades materiais da membrana plasmática, fundamentalmente uma bicamada fosfolipídica com espessura de dimensões moleculares. Além de forças elásticas, tal material bidimensional também experimenta tensões viscosas devido ao seu comportamento fluido (presumivelmente newtoniano) na direção tangencial. A despeito da notável concordância entre teoria e experimentos biofísicos sobre a geometria de membranas celulares, ainda não se faz presente um método computacional para simulação de sua (real) dinâmica viscosa governada pela lei de Boussinesq-Scriven. Assim sendo, introduzimos uma formulação variacional mista de três campos para escoamentos viscosos de superfícies fechadas curvas. Nela, o fluido circundante é levado em conta considerando-se uma restrição de volume interior, ao passo que uma restrição de área corresponde à inextensibilidade. As incógnitas são a velocidade, o vetor curvatura e a pressão superficial, todas estas interpoladas com elementos finitos lineares contínuos via estabilização baseada na projeção do gradiente de pressão. O método é semi-implícito e requer a solução de apenas um único sistema linear por passo de tempo. Outro ingrediente numérico proposto é uma força que mimetiza a ação de uma pinça óptica, permitindo interação virtual com a membrana, onde a qualidade e o refinamento de malha são mantidos por remalhagem adaptativa automática. Extensivos experimentos numéricos de dinâmica de relaxação são apresentados e comparados com soluções quasi-analíticas. É observada estabilidade temporal condicional com uma restrição de passo de tempo que escala como o quadrado do tamanho de malha. Reportamos a convergência e os limites de estabilidade de nosso método e sua habilidade em predizer corretamente o equilíbrio dinâmico de compridas e finas elongações cilíndricas (tethers) que surgem a partir de pinçamentos membranais. A dependência de forma membranal com respeito a uma velocidade imposta de pinçamento também é discutida, sendo que há um valor limiar de velocidade abaixo do qual um tether não se forma de início. Testes adicionais ilustram a robustez do método e a relevância dos efeitos viscosos membranais quando sob a ação de forças externas. Sem dúvida, ainda há um longo caminho a ser trilhado para o entendimento completo da mecânica celular (há de serem consideradas outras estruturas tais como citoesqueleto, canais iônicos, proteínas transmembranares, etc). O primeiro passo, porém, foi dado: a construção de um esquema numérico variacional capaz de simular a intrigante dinâmica das membranas celulares. / Cell mechanics lies on the material properties of the plasmatic membrane, fundamentally a two-molecule-thick phospholipid bilayer. Other than bending elastic forces, such a two-dimensional interfacial material also experiences viscous stresses due to its (presumably Newtonian) surface fluid tangential behaviour. Despite the remarkable agreement on membrane shapes between theory and biophysical experiments, there is no computational method for simulating its (actual) viscous dynamics governed by the Boussinesq- Scriven law. Accordingly, we introduce a mixed three-field variational formulation for viscous flows of closed curved surfaces. In it, the bulk fluid is taken into account by means of an enclosed-volume constraint, whereas an area constraint stands for the membranes inextensible character. The unknowns are the velocity, vector curvature and surface pressure fields, all of which are interpolated with linear continuous finite elements by means of a pressure-gradient-projection scheme. The method is semi-implicit and it requires the solution of a single linear system per time step. Another proposed ingredient is a numerical force that emulates the action of an optical tweezer, allowing for virtual interaction with the membrane, where mesh quality and refinement are maintained by adaptively remeshing. Extensive relaxation experiments are reported and compared with quasi-analytical solutions. Conditional time stability is observed, with a time step restriction that scales as the square of the mesh size. We discuss both convergence and the stability limits of our method, its ability to correctly predict the dynamical equilibrium of the tether due to tweezing. The dependence of the membrane shape on imposed tweezing velocities is also addressed. Basically, there is a threshold velocity value below which the tethers shape does not arise at first. Further tests illustrate the robustness of the method and show the significance of viscous effects on membranes deformation under external forces. Undoubtedly, there is still a long way to track toward the understanding of celullar mechanics (one still has to account other structures such as cytoskeleton, ion channels, transmembrane proteins, etc). The first step has given, though: the design of a numerically robust variational scheme capable of simulating the engrossing dynamics of fluid cell membranes.
5

Tratamento numérico da mecânica de interfaces lipídicas: modelagem e simulação / A numerical approach to the mechanics of lipid interfaces: modeling and simulation

Diego Samuel Rodrigues 04 September 2015 (has links)
A mecânica celular jaz nas propriedades materiais da membrana plasmática, fundamentalmente uma bicamada fosfolipídica com espessura de dimensões moleculares. Além de forças elásticas, tal material bidimensional também experimenta tensões viscosas devido ao seu comportamento fluido (presumivelmente newtoniano) na direção tangencial. A despeito da notável concordância entre teoria e experimentos biofísicos sobre a geometria de membranas celulares, ainda não se faz presente um método computacional para simulação de sua (real) dinâmica viscosa governada pela lei de Boussinesq-Scriven. Assim sendo, introduzimos uma formulação variacional mista de três campos para escoamentos viscosos de superfícies fechadas curvas. Nela, o fluido circundante é levado em conta considerando-se uma restrição de volume interior, ao passo que uma restrição de área corresponde à inextensibilidade. As incógnitas são a velocidade, o vetor curvatura e a pressão superficial, todas estas interpoladas com elementos finitos lineares contínuos via estabilização baseada na projeção do gradiente de pressão. O método é semi-implícito e requer a solução de apenas um único sistema linear por passo de tempo. Outro ingrediente numérico proposto é uma força que mimetiza a ação de uma pinça óptica, permitindo interação virtual com a membrana, onde a qualidade e o refinamento de malha são mantidos por remalhagem adaptativa automática. Extensivos experimentos numéricos de dinâmica de relaxação são apresentados e comparados com soluções quasi-analíticas. É observada estabilidade temporal condicional com uma restrição de passo de tempo que escala como o quadrado do tamanho de malha. Reportamos a convergência e os limites de estabilidade de nosso método e sua habilidade em predizer corretamente o equilíbrio dinâmico de compridas e finas elongações cilíndricas (tethers) que surgem a partir de pinçamentos membranais. A dependência de forma membranal com respeito a uma velocidade imposta de pinçamento também é discutida, sendo que há um valor limiar de velocidade abaixo do qual um tether não se forma de início. Testes adicionais ilustram a robustez do método e a relevância dos efeitos viscosos membranais quando sob a ação de forças externas. Sem dúvida, ainda há um longo caminho a ser trilhado para o entendimento completo da mecânica celular (há de serem consideradas outras estruturas tais como citoesqueleto, canais iônicos, proteínas transmembranares, etc). O primeiro passo, porém, foi dado: a construção de um esquema numérico variacional capaz de simular a intrigante dinâmica das membranas celulares. / Cell mechanics lies on the material properties of the plasmatic membrane, fundamentally a two-molecule-thick phospholipid bilayer. Other than bending elastic forces, such a two-dimensional interfacial material also experiences viscous stresses due to its (presumably Newtonian) surface fluid tangential behaviour. Despite the remarkable agreement on membrane shapes between theory and biophysical experiments, there is no computational method for simulating its (actual) viscous dynamics governed by the Boussinesq- Scriven law. Accordingly, we introduce a mixed three-field variational formulation for viscous flows of closed curved surfaces. In it, the bulk fluid is taken into account by means of an enclosed-volume constraint, whereas an area constraint stands for the membranes inextensible character. The unknowns are the velocity, vector curvature and surface pressure fields, all of which are interpolated with linear continuous finite elements by means of a pressure-gradient-projection scheme. The method is semi-implicit and it requires the solution of a single linear system per time step. Another proposed ingredient is a numerical force that emulates the action of an optical tweezer, allowing for virtual interaction with the membrane, where mesh quality and refinement are maintained by adaptively remeshing. Extensive relaxation experiments are reported and compared with quasi-analytical solutions. Conditional time stability is observed, with a time step restriction that scales as the square of the mesh size. We discuss both convergence and the stability limits of our method, its ability to correctly predict the dynamical equilibrium of the tether due to tweezing. The dependence of the membrane shape on imposed tweezing velocities is also addressed. Basically, there is a threshold velocity value below which the tethers shape does not arise at first. Further tests illustrate the robustness of the method and show the significance of viscous effects on membranes deformation under external forces. Undoubtedly, there is still a long way to track toward the understanding of celullar mechanics (one still has to account other structures such as cytoskeleton, ion channels, transmembrane proteins, etc). The first step has given, though: the design of a numerically robust variational scheme capable of simulating the engrossing dynamics of fluid cell membranes.

Page generated in 0.0497 seconds