• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coalescent distingués échangeables et processus de Fleming-Viot généralisés avec immigration.

Foucart, Clément 11 September 2012 (has links) (PDF)
L'objet de la thèse est d'étudier des processus stochastiques coalescents modélisant la généalogie d'une population échangeable avec immigration. On représente la population par l'ensemble des entiers N = {1, 2, ..}. Imaginons que l'on échantillonne n individus dans la population aujourd'hui. On cherche à regrouper ces n individus selon leur ancêtre en remontant dans le temps. En raison de l'immigration, il se peut qu'à partir d'une certaine génération, certains individus n'aient pas d'ancêtre dans la population. Par convention, nous les regrouperons dans un bloc que nous distinguerons en ajoutant l'entier 0. On parle du bloc distingué. Les coalescents distingués échangeables sont des processus à valeurs dans l'espace des partitions de Z+ := {0, 1, 2, ...}. A chaque temps t est associée une partition distinguée échangeable, c'est-à-dire une partition dont la loi est invariante sous l'action des permu- tations laissant 0 en 0. La présence du bloc distingué implique de nouvelles coagulations, inexistantes dans les coalescents classiques. Nous déterminons un critère suffisant (et né- cessaire avec conditions) pour qu'un coalescent distingué descende de l'infini. C'est-à-dire qu'immédiatement après 0, le processus n'ait plus qu'un nombre fini de blocs. D'autre part, nous nous intéressons à une relation de dualité entre ces coalescents et des processus à valeurs dans les mesures de probabilité, appelés processus de Fleming-Viot généralisés avec immigration. Nous établissons des liens entre ces derniers et les processus de branchement continus avec immigration. Dans le cas d'un processus de branchement avec reproduction α-stable et immigration (α−1)-stable, nous montrons que le processus à valeurs mesures associé, renormalisé, est un processus de Fleming-Viot avec immigration changé de temps.

Page generated in 0.097 seconds