Return to search

Effects of physical properties and rheological characteristics on critical shear stress of fine sediments

During high flow rates, the acceleration of flow and turbulence around bridge foundations lead to scouring, defined as the removal of bed sediments. Due to the interparticle physico-chemical forces of clay particles, erodibility and transport mechanisms for fine sediments are different from those for coarse sediments, and the capability to predict the erosion resistance of fine sediments is still in question. In this study, silt-clay soil mixtures with different kaolin contents were prepared by mixing ground silica and Georgia kaolin with tap water. Geotechnical tests were carried out to obtain the physical properties of the specimens. The critical shear stress and yield stress of the soil mixtures were determined through hydraulic flume experiments and rheometer tests, respectively. Particle associations of the soil specimens were observed using the technique of scanning electron microscopy (SEM). From the laboratory work and data analysis, relationships among the critical shear stress, yield stress, and the soil physical properties were developed from multiple regression analysis. Specifically, values of the critical shear stress, yield stress, and their dimensionless form can be predicted by the soil properties including bulk density, clay content, and water content. Finally, a single relationship is obtained to predict the Shields parameter as a function of the corresponding dimensionless yield stress in this study. The results can be used to provide a methodology for engineering applications requiring the value of critical shear stress such as estimating fine sediment bed stability and assessing the erosion risk of river beds in proximity to bridge foundations and other flow obstructions.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/51723
Date08 April 2013
CreatorsWang, Yung-Chieh (Becky)
ContributorsSturm, Terry W.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0018 seconds