Finite element modeling has become a powerful tool in orthopedic biomechanics, allowing simulations with complex geometries. Current fatigue behavior simulations are unable to accurately predict the cycles to failure, creep, and damage or modulus loss even when applied to a bending model. It is thought that the inhomogeneity of the models may be the source of the problem. It has also been suggested that the volume size of the element will affect the fatigue behavior. This is called a stressed volume effect. In this thesis non-homogeneous finite element models were used to examine the effects of "sizing factors" on damage laws in fatigue simulations.
Non-homogeneous finite element models were created from micro computed tomography (CT) images of dumbbell shaped fatigue samples. An automatic voxel meshing technique was used which converted the CT data directly into mesh geometry and material properties.
My results showed that including these sizing factors improved the accuracy of the fatigue simulations on the non-homogeneous models. Using the Nelder-Mead optimization routine, I optimized the sizing factors for a group of 5 models. When these optimized sizing factors were applied to other models they improved the accuracy of the simulations but not as much as for the original models, but they improved the results more than with no sizing factors at all. I found that in our fatigue simulations we could account for the effects of stressed volume and inhomogeneity by including sizing factors in the life and damaging laws. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/33067 |
Date | 06 July 2006 |
Creators | Ryan, Steven Francis |
Contributors | Engineering Mechanics, Cotton, John R., Dowling, Norman E., Grant, John Wallace |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | StevenRyan.pdf |
Page generated in 0.0022 seconds