Return to search

Finite Element Simulation of the Compaction and Springback of an Aluminum Powder Metallurgy Alloy

A new finite element model was developed to predict the density distribution in an Alumix 321 powder metallurgy compact. The model can predict the density distribution results of single-action compaction from 100 to 500 MPa compaction pressure. The model can also determine the amount of springback experienced by a compact upon ejection from the die at 100 and 300 MPa compaction pressure. An optical densitometry method, along with the creation of a compaction curve, was used to experimentally predict density distributions found within compacts, and found results that were consistent with both literature and finite element simulation. Further powder characterization included testing apparent density and flow rate of the powder. A literature review was also conducted and the results of which have been organized by three categories (powder type, material model, and finite element code) for easy reference by future powder researchers.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:NSHD.ca#10222/14615
Date22 March 2012
CreatorsSelig, Stanley
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0022 seconds