The larval fish and zooplankton assemblages were studied in the permanently open Sundays Estuary on the south-east coast of South Africa, using standard boat-based plankton towing methods. A total of 8174 larval and early juvenile fishes were caught, representing 12 families and 23 taxa. The Clupeidae, Gobiidae and Blenniidae were the dominant fish families. Common species included Gilchristella aestuaria, Caffrogobius gilchristi, Omobranchus woodi, Liza dumerilii, Glossogobius callidus and Myxus capensis. Estuarine resident species (Category I) predominantly in the preflexion developmental stage, dominated the system. A total of 19 zooplankton taxa were recorded. Copepoda dominated the zooplankton community. Dominant species included Pseudodiaptomus hessei, Acartia longipatella, Halicyclops sp., Mesopodopsis wooldridgei, and the larvae of Paratylodiplax edwardsii and Hymenosoma orbiculare. Mean larval fish density showed similar trends seasonally, spatially and across salinity zones, with mean zooplankton density in the Sundays Estuary. Gut content analysis of five larval fish species: Gilchristella aestuaria, Pomadasys commersonnii, Monodactylus falciformis, Myxus capensis and Rhabdosargus holubi, revealed species specific diet and prey selection. Although larval fish diet contained a variety of prey items, guts were dominated by P. hessei, chironomid larvae, Corophium triaenonyx, copepod eggs and insect larvae. Physico-chemical drivers and the interactions between these two plankton communities provide information that enables a more holistic view of the dynamics occurring in the Sundays Estuary planktonic ecosystem.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:10697 |
Date | January 2010 |
Creators | Sutherland, Kate |
Publisher | Nelson Mandela Metropolitan University, Faculty of Science |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis, Masters, MSc |
Format | xi, 131 leaves ; 30 cm, pdf |
Rights | Nelson Mandela Metropolitan University |
Page generated in 0.0022 seconds