Les divers composants d'un réacteur d'avion sont soumis à des chargements de fatigue mécaniques et thermiques fortement variables. Afin de prédire au mieux leurs durées de vie, il est alors nécessaire de prendre en compte l'ensemble de ces variations. Pour ce faire, un modèle représentant de façon incrémentale l'évolution de la plasticité en pointe de fissure a été développé. Celui-ci permet de prédire la vitesse de propagation d'une fissure tout en prenant en compte les effets d'histoire provenant de la plasticité produite lors de surcharges ou de sous-charges. Dans cette étude, ce modèle condensé de plasticité a été exprimé plus simplement à partir du facteur d'intensité des contraintes et l'identification automatisée de ses divers paramètres a été redéveloppée. Dans ce but, un essai de fissuration stable a été conçu pour déterminer simplement le seuil de non-propagation du matériau. Par ailleurs, les éventuelles fissures se propageant dans un composant sont en général amorcées en surface à partir de chocs ou de rayures. Ces fissures passent la majeure partie de leur vie dans un régime de propagation de fissure courte, différant de celui d'une fissure longue. En effet, à facteur d'intensité des contraintes équivalent, une fissure courte se propagera plus rapidement qu'une fissure longue. La prise en compte de ce comportement dans la prédiction de durée de vie est donc primordiale. En outre, il a été observé qu'une fissure longue subissant une contrainte T négative se propage de façon analogue à une fissure courte. Il a donc été choisi de développer un nouveau modèle adapté aux fissures courtes en prenant en compte l'influence de la contrainte T sur la vitesse de propagation. Enfin, à partir des essais de fissuration stable, un protocole a été développé pour réaliser des éprouvettes comportant fissure courte. Une campagne d'essais multiaxiaux pour différentes valeurs de contrainte T a été menée en régime permanent et transitoire afin d'étudier les similitudes entre effet de fissure courte et influence de la contrainte T. / The various components of an aircraft engine undergo strong changes in mechanical and thermal fatigue loadings. All these variations must be taken into account in order to anticipate the components' total fatigue life to the best. An incremental model showing the changes in plasticity at the crack tip has therefore been developed. It allows us to foresee the crack growth rate with history effects by modelling the plastic behaviour produced when overloads or underloads occur. In this study, the plasticity condensed model has been represented in an easier way, using the stress intensity factor and the automated identification of its parameters has been redeveloped. A stable crack growth test has been designed to determine easily the fatigue crack growth threshold of the material. Cracks usually grow from scratches or impacts on the surface of the component. These cracks spend much of their fatigue life growing with a short crack behaviour, differing from the long crack one. As a matter of fact, a short crack grows faster than a long crack for a same stress intensity factor. This behaviour must therefore be taken into account while modelling the crack growth to accurately predict the total fatigue life of the component. It appeared furthermore that a long crack undergoing a negative T-stress grows the same way as a short crack. It has consequently been chosen to develop a short crack growth model using the influence of T-stress on the crack growth rate. Finally, using the stable crack growth specimens, an experimental protocol has been designed to produce new specimens containing a short crack. A multiaxial tests campaign was carried out for various values of T-stress in permanent and transitional regimes in order to compare short crack and T-stress effects.
Identifer | oai:union.ndltd.org:theses.fr/2017SACLN028 |
Date | 04 July 2017 |
Creators | Brugier, François |
Contributors | Université Paris-Saclay (ComUE), Pommier, Sylvie |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds