The focus of this thesis is on systems that employ both flash and magnetic disks as storage media. Considering the widely disparate I/O costs of flash disks currently on the market, our approach is a cost-aware one: we explore techniques that exploit the I/O costs of the underlying storage devices to improve I/O performance. We also study the asymmetric I/O properties of magnetic and flash disks and propose algorithms that take advantage of this asymmetry. Our work is geared towards database systems; however, most of the ideas presented in this thesis can be generalised to any data-intensive application. For the case of low-end, inexpensive flash devices with large capacities, we propose using them at the same level of the memory hierarchy as magnetic disks. In such setups, we study the problem of data placement, that is, on which type of storage medium each data page should be stored. We present a family of online algorithms that can be used to dynamically decide the optimal placement of each page. Our algorithms adapt to changing workloads for maximum I/O efficiency. We found that substantial performance benefits can be gained with such a design, especially for queries touching large sets of pages with read-intensive workloads. Moving one level higher in the storage hierarchy, we study the problem of buffer allocation in databases that store data across multiple storage devices. We present our novel approach to per-device memory allocation, under which both the I/O costs of the storage devices and the cache behaviour of the data stored on each medium determine the size of the main memory buffers that will be allocated to each device. Towards informed decisions, we found that the ability to predict the cache behaviour of devices under various cache sizes is of paramount importance. In light of this, we study the problem of efficiently tracking the hit ratio curve for each device and introduce a lowoverhead technique that provides high accuracy. The price and performance characteristics of high-end flash disks make them perfectly suitable for use as caches between the main memory and the magnetic disk(s) of a storage system. In this context, we primarily focus on the problem of deciding which data should be placed in the flash cache of a system: how the data flows from one level of the memory hierarchy to the others is crucial for the performance of such a system. Considering such decisions, we found that the I/O costs of the flash cache play a major role. We also study several implementation issues such as the optimal size of flash pages and the properties of the page directory of a flash cache. Finally, we explore sorting in external memory using external merge-sort, as the latter employs access patterns that can take full advantage of the I/O characteristics of flash memory. We study the problem of sorting hierarchical data, as such is necessary for a wide variety of applications including archiving scientific data and dealing with large XML datasets. The proposed algorithm efficiently exploits the hierarchical structure in order to minimize the number of disk accesses and optimise the utilization of available memory. Our proposals are not specific to sorting over flash memory: the presented techniques are highly efficient over magnetic disks as well.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:562811 |
Date | January 2010 |
Creators | Koltsidas, Ioannis |
Contributors | Viglas, Stratis. ; Buneman, Peter |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/3932 |
Page generated in 0.0016 seconds