Model Predictive Control (MPC) is a control strategy based on optimization that handles system constraints explicitly, making it a popular feedback control method in real industrial processes. However, designing this control policy is an expensive operation since an explicit model of the process is required when re-tuning the controller. Another common practical challenge is that not all states are available, which calls for an observer in order to estimate the states, and imposes additional challenges such as satisfying the constraints and conditions that follow. This thesis attempts to address these challenges by extending the novel Adversarial Adaptive Model Predictive Control (AAMPC) algorithm with output-feedback for linear plants without explicit identification. The AAMPC algorithm is an adaptive MPC framework, where results from an adversarial Multi-Armed Bandit (MAB) are applied to a basic model predictive control formulation. The algorithm of the project, Adversarial Adaptive Output-Feedback Model Predictive Control (AAOFMPC), is derived by extending the standard MPC formulation with output-feedback, i.e, to an Output-Feedback Model Predictive Control (OFMPC) scheme, where a Kalman filter is implemented as the observer. Furthermore, the control performance of the extended algorithm is demonstrated with the problem of driving the state to a given reference, in which the performance is evaluated in terms of regret, state estimation errors, and how well the states track their given reference. Experiments are conducted on two discrete-time Linear Time- Invariant (LTI) systems, a second order system and a third order system, that are perturbed with different noise sequences. It is shown that the AAOFMPC performance satisfies the given theoretical bounds and constraints despite larger perturbations. However, it is also shown that the algorithm is not very robust against noise since offsets from the reference values for the state trajectories are observed. Furthermore, there are several tuning parameters of AAOFMPC that need further investigation for optimal performance. / Modell Prediktiv Reglering (MPC) är en optimeringsbaserad reglertekniksmetod som hanterar processbegränsingar på ett systematiskt sätt, vilket gör den till en populär metod inom återkopplad reglering i processindustrin. Denna metod medför dock höga beräkningskostnader eftersom det krävs en explicit modell varje gång regulatorn justeras online. I praktiken är det också vanligt att alla tillståndsvariabler inte är tillgängliga, vilket kräver en observatör för att rekonstruera alla tillståndsvariabler. Detta leder till fler utmaningar som att uppfylla ytterligare systembegränsingar och villkor som följer. Detta projekt adresserar dessa utmaningar genom att förlänga den nya algoritmen Adversarial Adaptiv Modell Prediktiv Reglering (AAMPC) med output-feedback för linjära system utan explicit modellidentifiering. AAMPC-algoritmen är en adaptiv reglerstrategi där resultat från en adversarial multiarmed bandit (MAB) appliceras i en standard MPC-formulering. Denna MPC-formulering är förlängd med output-feedback dvs. Output-Feedback Modell Predktiv Reglering (OFMPC) där ett Kalman filter är implementerad som en observatör och resulterar i projektets algoritm: Adversarial Adaptiv Output- Feedback Modell Prediktiv Reglering (AAOFMPC). Vidare demonstreras den utökade algoritmens prestanda med problemet att driva tillståndsvariablerna till ett givet referensvärde, där prestandan evalueras i termer av regret, skattningsfel och hur väl tillståndsvariablerna följer de givna referensvärdena. Experiment utförs på två tidsdiskreta tidsinvarianta (LTI) system, ett andraordningssystem och ett tredjeordningssystem, som är perturberade med olika värden av brus. Resultaten visar att AAOFMPC:s prestanda uppfyller de givna teoretiska begränsningarna trots större störningar. Det visar sig dock att algoritmen inte är särskilt robust mot brus eftersom det sker avvikelser från de givna referensvärdena för tillståndsvariablerna. Dessutom finns det flera parametrar i algoritmen som kräver ytterligare utredningar för optimal prestanda.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-309085 |
Date | January 2021 |
Creators | Bui, Linda |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2021:926 |
Page generated in 0.0078 seconds