Les systèmes embarqués sont de plus en plus présents dans l'industrie comme dans la vie quotidienne. Une grande partie de ces systèmes comprend des applications effectuant du traitement intensif des données: elles utilisent de nombreux filtres numériques, où les opérations sur les données sont répétitives et ont un contrôle limité. Les graphes "flots de données", grâce à leur déterminisme fonctionnel inhérent, sont très répandus pour modéliser les systèmes embarqués connus sous le nom de "data-driven". L'ordonnancement statique et périodique des graphes flot de données a été largement étudié, surtout pour deux modèles particuliers: SDF et CSDF. Dans cette thèse, on s'intéresse plus particulièrement à l'ordonnancement périodique des graphes CSDF. Le problème consiste à identifier des séquences périodiques infinies d'actionnement des acteurs qui aboutissent à des exécutions complètes à buffers bornés. L'objectif est de pouvoir aborder ce problème sous des angles différents : maximisation de débit, minimisation de la latence et minimisation de la capacité des buffers. La plupart des travaux existants proposent des solutions pour l'optimisation du débit et négligent le problème d'optimisation de la latence et propose même dans certains cas des ordonnancements qui ont un impact négatif sur elle afin de conserver les propriétés de périodicité. On propose dans cette thèse un ordonnancement hybride, nommé Self-Timed Périodique (STP), qui peut conserver les propriétés d'un ordonnancement périodique et à la fois améliorer considérablement sa performance en terme de latence. / One of the most important aspects of parallel computing is its close relation to the underlying hardware and programming models. In this PhD thesis, we take dataflow as the basic model of computation, as it fits the streaming application domain. Cyclo-Static Dataflow (CSDF) is particularly interesting because this variant is one of the most expressive dataflow models while still being analyzable at design time. Describing the system at higher levels of abstraction is not sufficient, e.g. dataflow have no direct means to optimize communication channels generally based on shared buffers. Therefore, we need to link the dataflow MoCs used for performance analysis of the programs, the real time task models used for timing analysis and the low-level model used to derive communication times. This thesis proposes a design flow that meets these challenges, while enabling features such as temporal isolation and taking into account other challenges such as predictability and ease of validation. To this end, we propose a new scheduling policy noted Self-Timed Periodic (STP), which is an execution model combining Self-Timed Scheduling (STS) with periodic scheduling. In STP scheduling, actors are no longer strictly periodic but self-timed assigned to periodic levels: the period of each actor under periodic scheduling is replaced by its worst-case execution time. Then, STP retains some of the performance and flexibility of self-timed schedule, in which execution times of actors need only be estimates, and at the same time makes use of the fact that with a periodic schedule we can derive a tight estimation of the required performance metrics.
Identifer | oai:union.ndltd.org:theses.fr/2015TOU30014 |
Date | 14 April 2015 |
Creators | Dkhil, Amira |
Contributors | Toulouse 3, Rochange, Christine |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.1766 seconds