Le flot de Ricci, introduit par Hamilton au début des années 80, a montré sa valeur pour étudier la topologie et la géométrie des variétés riemanniennes lisses. Il a ainsi permis de démontrer la conjecture de Poincaré (Perelman, 2003) et le théorème de la sphère différentiable (Brendle et Schoen, 2008). Cette thèse s'intéresse aux applications du flot de Ricci à des espaces métriques à courbure minorée peu lisses. On définit en particulier ce que signifie pour un flot de Ricci d'avoir pour condition initiale un espace métrique. Dans le Chapitre 2, on présente certains travaux de Simon permettant de construire un flot de Ricci pour certains espaces métriques de dimension 3. On démontre aussi deux applications de cette construction : un théorème de finitude en dimension 3 et une preuve alternative d'un théorème de Cheeger et Colding en dimension 3. Dans le Chapitre 3, on s'intéresse à la dimension 2. On montre que pour les surfaces singulières à courbure minorée (au sens d'Alexandrov), on peut définir un flot de Ricci et que celui-ci est unique. Ceci permet de montrer que l'application qui à une surface associe son flot de Ricci est continue par rapport aux perturbations Gromov-Hausdorff de la condition initiale. Le Chapitre 4 généralise une partie de ces méthodes en dimension quelconque. On doit y considérer des conditions de courbure autres que les usuelles minorations de la courbure de Ricci ou de la courbure sectionnelle. Les méthodes mises en place permettent de construire un flot de Ricci pour certains espaces métriques non effondrés limites de variétés dont l'opérateur de courbure est minoré. On montre aussi que sous certaines hypothèses de non-effondrement, les variétés à opérateur de courbure presque positif portent une métrique à opérateur de courbure positif ou nul. / The Ricci flow was introduced by Hamilton in the beginning of the 90's. It has been a valuable tool to study the topology and the geometry of smooth Riemannian manifolds. For example, it was essential in the of the Poincaré conjecture (Perelman, 2003) and of the differentiable sphere theorem (Brendle and Schoen, 2008). In this thesis, we are interested in the applications of Ricci flow to metric spaces with curvature bounded from below which are not smooth. We define what it means for a Ricci flow to admit a metric space as initial condition. In Chapter 2, we present some works of Simon which allow to build a Ricci flow for some metric spaces of dimension 3. We also give two applications of this result : a finiteness theorem in dimension 3 and an alternative of a theorem of Cheeger and Colding in dimension 3. In Chapter 3, we treat the special case of dimension 2. We show that for singular surfaces whose curvature is boded from below (in the sense of Alexandrov), we can define a Ricci and it is unique. This allow to show that for surfaces with curvature bounded from below, the application which maps a surface to its Ricci flow is continuous with respect to Gromov-Hausdorff perturbations of the initial condition. Chapter 4 generalizes some of these methods in higher dimension. Here one needs to consider other conditions on the curvature than the usual "Ricci curvature bounded from below" and "sectional curvature bounded from below". The methods used there allow us to build a Ricci flow for some non-collapsed metric spaces which are limits of manifolds whose curvature operator is bounded from below. We also show that under some non-collapsing assumptions manifolds with almost non-negative curvature operator admit metrics with non-negative curvature operator.
Identifer | oai:union.ndltd.org:theses.fr/2012GRENM038 |
Date | 21 September 2012 |
Creators | Richard, Thomas |
Contributors | Grenoble, Besson, Gérard |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds