Cotton gins have a readily available supply of biomass that is a by-product of cotton ginning. A 40 bph - cotton gin processing stripped cotton must manage 2,600 to 20,000 tonnes of cotton gin trash (CGT) annually. CGT contains approximately 16.3 MJ/kg (7000 Btu/lb.). CGT has the potential to serve as a renewable energy source. Gasification of biomasses such as CGT can offer processing facilities the opportunity to transform their waste biomass into electricity. The gasification of CGT yields 80% synthesis gas (syngas) and 20% biochar. The concentration of biochar in the syngas needs to be reduced prior to the direct fueling of an internal combustion engine driving a generator for electricity production. It was estimated that direct fueling of an internal combustion engine with syngas to drive the generator to produce electricity would cost $1M per megawatt (MW). In contrast, a 1MW system that consists of a boiler and steam turbine would cost $2M/MW.
The current provisional patent for the TAMU fluidized bed gasification (FBG) unit uses a 1D2D and 1D3D cyclone for the removal of biochar. A cyclone test stand was designed and constructed to evaluate cyclone capture efficiencies of biochar. A statistical experiment design was used to evaluate cyclone performances for varying concentrations of biochar. A total of 24 tests for the 1D2D and 36 tests for the 1D3D cyclone were conducted at ambient conditions. Average collection efficiency for the 1D2D cyclone was 96.6% and 96.9% for the 1D3D cyclone. An analysis on the cyclone’s pressure drop was performed to compare the change in pressure drop from air only passing through the cyclone and when the cyclones are loaded with biochar. The average change in pressure drop for the 1D2D cyclone was a decrease of 74%, and the average change in pressure drop for the 1D3D cyclone was a decrease of 36%.
An economic feasibility study was conducted to determine the price per kWh to produce electricity for a CGT fueled internal combustion engine power plant (ICPP) and a boiler and steam turbine power plant (SPP). The simulated cotton gin is a 40 bph rated facility operating for 2,000 hours a season (200% utilization) processing stripped cotton that yields approximately 180 kg/bale (400 lbs/bale) of CGT. Revenues consist of the electricity and natural gas expenses incurred during the ginning season, along with the extra electricity produced and sold back to the utility company at the whole price. Loan payments and operating costs include labor, maintenance, taxes, and insurance. Labor costs, the selling price of electricity and biochar are varied in the economic model. The ICPP has a NPV of $1,480,000, and the SPP has a NPV of -$160,000, under the base assumptions. The sensitivity analysis resulted in the selling price of electricity as having the largest change on the NPV for both of the power plants. The average predicted purchase price of electricity is $0.10/kWh for the twenty year simulation. The average price to produce electricity, with no source of revenue generation for the ICPP is $0.20/kWh and $0.26/kWh for the SPP.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/150963 |
Date | 16 December 2013 |
Creators | Saucier, David Shane |
Contributors | Parnell, Jr., Calvin B, Capareda, Sergio C, Lacewell, Ronald D |
Source Sets | Texas A and M University |
Language | English |
Detected Language | English |
Type | Thesis, text |
Format | application/pdf |
Page generated in 0.002 seconds