El presente trabajo tiene por objetivo presentar una versión del Teorema del Flujo Tubular que sirva de motivación para introducir objetos geométricos como fibrado tangente, subfibrado tangente, X-foliación, entre otros. Esta presentación resulta ser el caso 1-dimensional del Teorema de Frobenius, lo que nos permitirá ver con claridad qué tipo de problema es el que resuelve dicho teorema, facilitando la comprensión del caso k-dimensional de tan importante teorema. / --- The objetive of this work is to present a version of the Tubular Flow Theorem that motivates the introduction of geometric objects such as: tan- gent bundle, tangent subbundle, X-foliation, etc. This presentation becomes the 1-dimensional case of the Frobenius Theorem, which will let us see what kind of problem this theorem solves, in order to improve the comprehension of the k-dimensional case of such as important theorem. / Tesis
Identifer | oai:union.ndltd.org:Cybertesis/oai:cybertesis.unmsm.edu.pe:cybertesis/3331 |
Date | January 2007 |
Creators | Cutimanco Panduro, Miguel Alfredo |
Contributors | Vera Saravia, Edgar Diógenes |
Publisher | Universidad Nacional Mayor de San Marcos |
Source Sets | Universidad Nacional Mayor de San Marcos - SISBIB PERU |
Language | Spanish |
Detected Language | English |
Type | info:eu-repo/semantics/bachelorThesis |
Format | application/pdf |
Source | Universidad Nacional Mayor de San Marcos, Repositorio de Tesis - UNMSM |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds