In this study, we measured the binding constant, KCOC, between several humic acids and benzo(h)quinoline, a nitrogen contained PAHs via using fluorescence quenching method. KCOC of humic acids and phenanthrene, a parent PAHs, is also studied in comparison. Moreover, pH and ionic strength effect on the KCOC were investigated. According to our results, the phenanthrene¡¦s KCOC decreases as the pH increases due to the lower hydrophobicity of humic acid in higher pH values. The variation of benzo(h)quinoline¡¦s KCOC with pH exhibits a more complicated trend, with a maximum value at pH close to the pKb of benzo(h)quinoline. For pH lower than pKb, benzo(h)quinoline is protonated to be benzo(h)quinolinium, a cation, so that the ionic exchange is the dominant prosess in sorption mechanism. Therefore, the binding sites of humic acid increase with pH such that the KCOC increases with pH. In contrast, different mechanism involved in the binding for pH higher than pKb, neutral benzo(h)qunoline becomes dominant and hydrophobic interaction controls the binding prosess in sorption mechanism. At last, the composition of different functional groups of humic acid is also found significant in the binding affinity of benzo(h)qunoline or phenanthrene. Moreover, the benzo(h)qunoline¡¦s KCOC exhibits decreasing trend with increasing magnesium ionic strength because of the reduction of molecular size as well as the benzo(h)qunoline binding sites of humic acid. Findings from this study could provide valuable information for numerical simulation of transport and fates of HOPs in aquatic environment.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0824106-160552 |
Date | 24 August 2006 |
Creators | Hsu, Shih-han |
Contributors | none, none, none |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0824106-160552 |
Rights | withheld, Copyright information available at source archive |
Page generated in 0.0015 seconds