Les interactions cellule-cellule et cellule-matrice extracellulaire (MEC) sont cruciales pour entretenir la cohésion tissulaire. Ces deux types d'adhésions sont fonctionnellement interconnectés par un dialogue permanent qui met en jeu des voies de signalisation convergentes régulant notamment l'architecture et la contractilité du cytosquelette d'acto-myosine sous-jacent. Ce dialogue permet d'établir un équilibre de forces intracellulaires en réponse à la tension appliquée par le milieu extérieur. L'endothélium des vaisseaux sanguins est un tissu soumis à des conditions mécaniques particulières. En plus des compressions intercellulaires subies par tout épithélium, les cellules endothéliales (CEs) doivent également subir et résister aux forces hémodynamiques du flux sanguin et à la rigidité de la lame basale – deux signaux mécaniques agissant de part et d'autre de l'endothélium. Les Cerebral Cavernous Maformations (CCM) ou encore angiomes caverneux sont des lésions vasculaires hémorragiques d'origine génétique qui se développent au niveau des capillaires du système nerveux central et qui se caractérisent par des défauts dans l'environnement proche des CEs. La perte des jonctions intercellulaires et du recouvrement par les cellules murales, l'organisation aberrante de la membrane basale aussi que la stagnation du flux sanguin sont les caractéristiques des CCM. C'est pourquoi nous avons choisi cette pathologie comme modèle intéressant de mécanotransduction mettant en jeu le dialogue entre les intégrines et les cadhérines. En effet, les trois gènes indifféremment mutés dans cette pathologie codent pour des protéines, CCM1-3, qui s'associent en un complexe ternaire et qui sont reconnues comme des acteurs importants de la régulation des jonctions adhérentes. Des études moléculaires et protéomiques montrant que le complexe CCM interagit avec la protéine ICAP-1, un régulateur négatif de l'intégrine β1, nous ont conduit à formuler l'hypothèse selon laquelle ce complexe jouerait un rôle pivot dans la signalisation croisée entre ces intégrines et cadhérines. Les études effectuées pendant ma thèse ont démontré que les protéines CCM régulent l'homéostasie tensionnelle médiée par les structures d'adhérence intercellulaires et à la MEC par leur action inhibitrice sur l'intégrine β1 et en controlant une balance d'activité entre les deux isoformes de ROCK, ROCK1 et ROCK2. Nous avons montré que, suite à la perte des protéines CCMs, la suractivation de l'intégrine β1 augmente la sensibilité des CEs aux signaux mécaniques comme la rigidité de la MEC ou les forces hémodynamiques du flux sanguin. Il en résulte une suractivation de la contractilité cellulaire dépendante de ROCK1 déclenchant une boucle de rétrocontrôle mécanique conduisant à l'amplification des tensions intra- et extracellulaire et brisant ainsi l'homéostasie tensionnelle pour favoriser le phénotype malin. / Cell-cell or cell-matrix interactions have crucial roles in the maintenance of the physical cohesion of any tissue. In addition, growing body of evidence indicates that these two adhesion systems do not act independently, but rather are functionally interconnected by a permanent crosstalk. This dialog usually operates via common molecules that trigger convergent signaling as well as by actomyosin network which, by providing physical link, contributes to establishment of intracellular force counterbalancing tension applied by extracellular surrounding. Blood vessels endothelium is a particular tissue in term of mechanical conditions. Apart from intracellular compression, endothelial lining needs to resist hemodynamic forces as well as rigidity of the basal membrane - two mechanical inputs acting from opposite sides of the endothelial layer. Cerebral Cavernous Malformation (CCM) is a sporadically acquired or inherited disease of venous capillaries within neuro-vascular unit characterized by defects in all aspects of local microenvironment. Loss of intra-endothelial junctions and mural cell coverage, aberrant organization of basal lamina as well as stagnant blood flow are features of CCM lesions. Thereby, CCM became for us an interesting model to study mechanotrasduction process and in this context, the cross-talk between integrin and cadherin mediated adhesion structures. Indeed, CCM proteins are well recognized players involved in a control of VE-cadherin mediated intracellular junctions. In addition, CCM1 was found to interact with ICAP-1, a negative regulator of β1 integrin, raising the possibility that this complex most likely acts as molecular node regulating β1 integrin/ VE-cadherin convergent signaling pathways.Studies performed during this thesis have demonstrated that CCM complex coordinates cadherin- and integrin-mediated tensional homeostasis by repressing β1 integrin activation and maintaining a balance of activity between the two isoforms of RhoA-associated kinases ROCK1 and ROCK2. We have found that β1 integrin sustained over-activation upon CCM proteins loss contributes to increased ECs sensitivity to mechanical cues, such as ECM physical reorganization or hemodynamic force that in turn activates ROCK1-dependent contractility. This establishes a positive feedback mechanical loop that breaks tensional homeostasis and switches on the malignant phenotype.
Identifer | oai:union.ndltd.org:theses.fr/2014GRENV065 |
Date | 24 November 2014 |
Creators | Lisowska, Justyna |
Contributors | Grenoble, Albiges-Rizo, Corinne, Faurobert, Eva |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0715 seconds