The topic of this thesis is the theoretical and numerical analysis of optimal control problems, whose differential constraints are given by Fokker-Planck models related to jump-diffusion processes. We tackle the issue of controlling a stochastic process by formulating a deterministic optimization problem. The
key idea of our approach is to focus on the probability density function of the process,
whose time evolution is modeled by the Fokker-Planck equation. Our control framework is advantageous since it allows to model the action of the control over the entire range of the process, whose statistics are characterized by the shape of its probability density function.
We first investigate jump-diffusion processes, illustrating their main properties. We define stochastic initial-value problems and present results on the existence and uniqueness of their solutions. We then discuss how numerical solutions of stochastic problems are computed, focusing on the Euler-Maruyama method.
We put our attention to jump-diffusion models with time- and space-dependent coefficients and jumps given by a compound Poisson process. We derive the related Fokker-Planck equations, which take the form of partial integro-differential equations. Their differential term is governed by a parabolic operator, while the nonlocal integral operator is due to the presence of the jumps. The derivation is carried out in two cases. On the one hand, we consider a process with unbounded range. On the other hand, we confine the dynamic of the sample paths to a bounded domain, and thus the behavior of the process in proximity of the boundaries has to be specified. Throughout this thesis, we set the barriers of the domain to be reflecting.
The Fokker-Planck equation, endowed with initial and boundary conditions, gives rise to Fokker-Planck problems. Their solvability is discussed in suitable functional spaces. The properties of their solutions are examined, namely their regularity, positivity and probability mass conservation. Since closed-form solutions to Fokker-Planck problems are usually not available, one has to resort to numerical methods.
The first main achievement of this thesis is the definition and analysis of conservative and positive-preserving numerical methods for Fokker-Planck problems. Our SIMEX1 and SIMEX2 (Splitting-Implicit-Explicit) schemes are defined within the framework given by the method of lines. The differential operator is discretized by a finite volume scheme given by the Chang-Cooper method, while the integral operator is approximated by a mid-point rule. This leads to a large system of ordinary differential equations, that we approximate with the Strang-Marchuk splitting method. This technique decomposes the original problem in a
sequence of different subproblems with simpler structure, which are separately solved and linked to each other through initial conditions and final solutions. After performing the splitting step, we carry out the time integration with first- and second-order time-differencing methods. These steps give rise to the SIMEX1 and SIMEX2 methods, respectively.
A full convergence and stability analysis of our schemes is included. Moreover, we are able to prove that the positivity and the mass conservation of the solution to Fokker-Planck problems are satisfied at the discrete level by the numerical solutions computed with the SIMEX schemes.
The second main achievement of this thesis is the theoretical analysis and the numerical solution of optimal control problems governed by Fokker-Planck models. The field of optimal control deals with finding control functions in such a way that given cost functionals are minimized. Our framework aims at the minimization of the difference between a known sequence of values and the first moment of a jump-diffusion process; therefore, this formulation can also be considered as a parameter estimation problem for stochastic processes. Two cases are discussed, in which the form of the cost functional is continuous-in-time and discrete-in-time, respectively.
The control variable enters the state equation as a coefficient of the Fokker-Planck partial integro-differential operator. We also include in the cost functional a $L^1$-penalization term, which enhances the sparsity of the solution. Therefore, the resulting optimization problem is nonconvex and nonsmooth. We derive the first-order optimality systems satisfied by the optimal solution. The computation of the optimal solution is carried out by means of proximal iterative schemes in an infinite-dimensional framework. / Die vorliegende Arbeit beschäftigt sich mit der theoretischen und numerischen Analyse von Optimalsteuerungsproblemen, deren Nebenbedingungen die Fokker-Planck-Gleichungen von Sprung-Diffusions-Prozessen sind. Unsere Strategie baut auf der Formulierung eines deterministischen Problems auf, um einen stochastischen Prozess zu steuern. Der Ausgangspunkt ist, die Wahrscheinlichkeitsdichtefunktion des Prozesses zu betrachten, deren zeitliche Entwicklung durch die Fokker-Planck-Gleichung modelliert wird. Dieser Ansatz ist vorteilhaft, da er es ermöglicht, den gesamten Bereich des Prozesses durch die Wirkung der Steuerung zu beeinflussen.
Zuerst beschäftigen wir uns mit Sprung-Diffusions-Prozessen. Wir definieren Ausgangswertprobleme, die durch stochastische Differentialgleichungen beschrieben werden, und präsentieren Ergebnisse zur Existenz und Eindeutigkeit ihrer Lösungen. Danach diskutieren wir, wie numerische Lösungen stochastischer Probleme berechnet werden, wobei wir uns auf die Euler-Maruyama-Methode konzentrieren.
Wir wenden unsere Aufmerksamkeit auf Sprung-Diffusions-Modelle mit zeit- und raumabhängigen Koeffizienten und Sprüngen, die durch einen zusammengesetzten Poisson-Prozess modelliert sind. Wir leiten die zugehörigen Fokker-Planck-Glei-chungen her, die die Form von partiellen Integro-Differentialgleichungen haben. Ihr Differentialterm wird durch einen parabolischen Operator beschrieben, während der nichtlokale Integraloperator Spr\"{u}nge modelliert. Die Ableitung wird auf zwei unterschiedlichen Arten ausgef\"{u}hrt, je nachdem, ob wir einen Prozess mit unbegrenztem oder beschränktem Bereich betrachten. In dem zweiten Fall muss das Verhalten des Prozesses in der Nähe der Grenzen spezifiziert werden; in dieser Arbeit setzen wir reflektierende Grenzen.
Die Fokker-Planck-Gleichung, zusammen mit einem Anfangswert und geeigneten Randbedingungen, erzeugt das Fokker-Planck-Problem. Die Lösbarkeit dieses Pro-blems in geeigneten Funktionenräumen und die Eigenschaften dessen Lösung werden diskutiert, nämlich die Positivität und die Wahrscheinlichkeitsmassenerhaltung. Da analytische Lösungen von Fokker-Planck-Problemen oft nicht verfügbar sind, m\"{u}ssen numerische Methoden verwendet werden.
Die erste bemerkenswerte Leistung dieser Arbeit ist die Definition und Analyse von konservativen numerischen Verfahren, die Fokker-Planck-Probleme lösen. Unsere SIMEX1 und SIMEX2 (Splitting-Implizit-Explizit) Schemen basieren auf der Linienmethode. Der Differentialoperator wird durch das Finite-Volumen-Schema von Chang und Cooper diskretisiert, während der Integraloperator durch eine Mittelpunktregel angenähert wird. Dies führt zu einem großen System von gewöhnlichen Differentialgleichungen, das mit der Strang-Marchuk-Splitting-Methode gelöst wird. Diese Technik teilt das ursprüngliche Problem in eine Folge verschiedener Teilprobleme mit einer einfachen Struktur, die getrennt gelöst werden und danach durch deren Anfangswerte miteinander verbunden werden. Dank der Splitting-Methode kann jedes Teilproblem implizit oder explizit gelöst werden. Schließlich wird die numerische Integration des Anfangswertsproblems mit zwei Verfahren durchgeführt, n\"{a}mlich dem Euler-Verfahren und dem Predictor-Corrector-Verfahren.
Eine umfassende Konvergenz- und Stabilitätsanalyse unserer Systeme ist enthalten. Darüber hinaus können wir beweisen, dass die Positivität und die Massenerhaltung der Lösung von Fokker-Planck-Problemen auf diskreter Ebene durch die numerischen Lösungen erfüllt werden, die mit den SIMEX-Schemen berechnet wurden.
Die zweite bemerkenswerte Leistung dieser Arbeit ist die theoretische Analyse und die numerische Behandlung von Optimalsteuerungsproblemen, deren Nebenbedingungen die Fokker-Planck-Probleme von Sprung-Diffusions-Prozessen sind. Der Bereich der optimalen Steuerung befasst sich mit der Suche nach einer optimalen Funktion, die eine gegebene Zielfunktion minimiert. Wir zielen auf die Minimierung des Unterschieds zwischen einer bekannten Folge von Werten und dem ersten Moment eines Sprung-Diffusions-Prozesses. Auf diese Weise kann unsere Formulierung auch als ein Parameterschätzungsproblem für stochastische Prozesse angesehen werden. Zwei Fälle sind erläutert, in denen die Zielfunktion zeitstetig beziehungsweise zeitdiskret ist.
Da die Steuerung ein Koeffizient des Integro-Differentialoperators der Zustandsglei-chung ist und die Zielfunktion einen $ L^1 $-Term beinhaltet, der die dünne Besetzung der Lösung erhöht, ist das Optimierungsproblem nichtkonvex und nichtglatt. Die von der optimalen L\"{o}sung erf\"{u}llten notwendigen Bedingungen werden hergeleitet, die man mit einem System beschreiben kann. Die Berechnung optimaler Lösungen wird mithilfe von Proximal-Methoden durchgeführt, die entsprechend um den unendlichdimensionalen Fall erweitert wurden.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:14564 |
Date | January 2017 |
Creators | Gaviraghi, Beatrice |
Source Sets | University of Würzburg |
Language | English |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by-sa/3.0/de/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.0034 seconds