La recherche de vie extraterrestre et en particulier de vie sur Mars est devenue un des enjeux majeurs des prochaines explorations spatiales. Dans ce cadre, la recherche de molécules organiques et l’étude de leur énantiomérie pourrait permettre d'obtenir les premiers indices en faveur d'une présence passée ou présente de vie sur cette planète. En effet la vie telle que nous la connaissons est uniquement basée sur des acides aminés L et sucres D. Ces molécules organiques et leur éventuel excès énantiomérique pourraient avoir été conservés dans les conditions martiennes. La chromatographie en phase gazeuse couplée à la spectrométrie de masse (CPG-SM) est actuellement la technique analytique spatialisable la plus pertinente pour la détection de composés organiques volatils. Afin de rendre volatils les composés réfractaires tels que les acides aminés, nous proposons une fonctionnalisation chimique au diméthylformamide diméthyl-acétal (DMF-DMA). Cette fonctionnalisation couplée à une séparation chromatographique sur une colonne chirale est une technique parfaitement adaptée à la séparation énantiomérique et à la spatialisation. Nous avons donc mis au point une méthode de fonctionnalisation des molécules organiques chirales par l’agent de méthylation DMF-DMA afin de séparer les énantiomères et de les étudier in situ en CPG-SM lors des futures missions martiennes. Cette technique d'analyse des molécules réfractaires chirales a ensuite été adaptée à une utilisation spatiale. Ainsi, la méthode d’analyse est constituée d’un four réactionnel dans lequel l’échantillon solide estplacé, les molécules d’intérêt exobiologique sont ensuite successivement extraites et fonctionnalisées au DMFDMA pour être analysées en CPG-SM. Les résultats ont permis de montrer qu’ à partir d’une faible quantité de sols d'analogues martiens (50 mg de sol du désert d’Atacama, Chili) et après optimisation de chacune des étapes, plusieurs types de molécules organiques présentes à l’état de traces ont pu être détectées, telles que des acides aminés, des acides carboxyliques et des bases nucléiques. Parmi ces molécules chirales, plusieurs ont pu être séparées selon leur forme énantiomérique. Le protocole est élaboré dans les limites technologiques et opératoires d’une analyse spatiale ; chaque étape est pensée pour un usage robotisé. Nous avons ainsi développé une expérience globale, sensible et robuste, totalement compatible avec les exigences d’une analyse in situ. C’est la raison pour laquelle cette expérience sera intégrée sur la prochaine mission martienne Exomars 2016/2018 afin de rechercher des traces de matière organique à la surface et en subsurface de Mars. La découverte d’un excès énantiomérique, voire d’une homochiralité, apporterait des indices forts quant à la présence d’une vie passée ou présente sur la planète rouge. / Looking for extraterrestrial life, particularly on Mars, has become a challenging aim for future space missions. In this framework, looking for organic molecules and studying their enantiomeric properties could lead to the first clues of an extinct or extant life on this planet. Indeed, life as we know it consists in one of the two specular forms of organic molecules only, and it has been shown that conditions at Mars could preserve, at least partially, this enantiomeric excess. Gas Chromatograph coupled to a Mass Spectrometer (GC-MS) is nowadays the most pertinent space compatible analytical tool for the detection of volatile organics. In order to transform refractory molecules suchas amino acids into volatile ones, we are putting forward a chemical derivatization with dimethylformamidedimethyl-acetal (DMF-DMA). This reaction, when coupled with an analytical step using a chiral chromatographic column, is perfectly adapted to enantiomeric separation within the space constraints. This thesis develops a method of derivatization of the chiral organic molecules with methylation reagent DMFDMA in order to separate and analyze in situ the enantiomers by GC-MS during the future Martian missions. This analytical tool consists in a reaction chamber into which the solid sample is dropped. From this sample, the molecules of interest are successively extracted and derivatized with DMF-DMA to be detected byGC-MS. From a low quantity of Martian analogue soil (50 mg of Atacama soil) and after a complete optimization of each step, numerous molecules of different kinds present at traces levels have been successfully detected, such as amino, carboxylic and nucleic acids. Among these molecules, some of the chiralones have been resolved regarding their enantiomeric forms. The whole procedure is elaborated within the technological and operational limits imposed by a space experiment, each step having been designed to becarried out robotically. Thus, we have developed a complete experiment, sensitive, robust and entirely meeting the requirements of an in situ analysis. That is the reason why this experiment has been selected to be integrated onboard the next Martian mission Exomars 2016/2018 in order to search traces of organic matter at Mars surface and subsurface. Determining an enantiomeric excess, or even homochirality, would be a remarkable breakthrough regarding the presence of an extinct or extant life on the red planet.
Identifer | oai:union.ndltd.org:theses.fr/2010ECAP0033 |
Date | 29 November 2010 |
Creators | Freissinet, Caroline |
Contributors | Châtenay-Malabry, Ecole centrale de Paris, Stambouli, Moncef, Buch, Arnaud, Sternberg, Robert |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0029 seconds