Pour une fonction additive f et une fonction multiplicative g , soit E ( f, g ; x ) := # { n ≤ x : f ( n ) = g ( n ) } . Dans cette thèse, nous améliorons le résultat de De Koninck, Doyon et Letendre relatif à l’ordre de grandeur de E ( ω, g ; x ) et E (Ω , g ; x ) . Nous obtenons aussi des résultats généralisant l’inégalité d’Hardy-Ramanujan et le théorème de Landau. De plus, nous appliquons la méthode de Selberg-Delange de façon à obtenir une formule relative à la fréquence des fonctions ω ( n ) et Ω( n ) en progression arithmétique. Finalement, nous trouvons une condition suffisante pour qu’une fonction arithmétique quel- conque possède une fonction de répartition et obtenons une version quantitative du théorème d’Erdős-Wintner. / For an additive function f and a multiplicative function g , let E ( f, g ; x ) := # { n ≤ x : f ( n ) = g ( n ) } . In this thesis, we improve the result of De Koninck, Doyon and Letendre regarding the order of magnitude of E ( ω, g ; x ) and E (Ω , g ; x ) . We also obtain results which generalise the Hardy-Ramanujan inequalities and the Landau theorem. Moreover, we use the Selberg-Delange method in order to obtain a formula on the frequency of the fonctions ω ( n ) and Ω( n ) in arithmetic progression. Finaly, we find a sufficient condition for an arithmetical function to possess a distribution function and obtain a quantitative version of the Erdős-Wintner theorem.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/32527 |
Date | 23 November 2018 |
Creators | Laniel, François |
Contributors | De Koninck, Jean-Marie, Doyon, Nicolas |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xi, 95 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.2365 seconds