Cette thèse comporte deux volets indépendants mais tous deux motivés par la modélisation mathématique et la simulation numérique de procédés photovoltaïques. La Partie I traite de systèmes d’équations aux dérivées partielles de diffusion croisée, modélisant l’évolution de concentrations ou de fractions volumiques de plusieurs espèces chimiques ou biologiques. Nous présentons dans le chapitre 1 une introduction succincte aux résultats mathématiques connus sur ces systèmes lorsqu’ils sont définis sur des domaines fixes. Nous présentons dans le chapitre 2 un système unidimensionnel que nous avons introduit pour modéliser l’évolution des fractions volumiques des différentes espèces chimiques intervenant dans le procédé de déposition physique en phase vapeur (PVD) utilisé pour la fabrication de cellules solaires à couches minces. Dans ce procédé, un échantillon est introduit dans un four à très haute température où sont injectées les différentes espèces chimiques sous forme gazeuse, si bien que des atomes se déposent petit à petit sur l’échantillon, formant une couche mince qui grandit au fur et à mesure du procédé. Dans ce modèle sont pris en compte à la fois l’évolution de la surface du film solide au cours du procédé et l’évolution des fractions volumiques locales au sein de ce film, ce qui aboutit à un système de diffusion croisée défini sur un domaine dépendant du temps. En utilisant une méthode récente basée sur l’entropie, nous montrons l’existence de solutions faibles à ce système et nous étudions leur comportement asymptotique dans le cas où les flux extérieurs imposés à la surface du film sont supposés constants. De plus, nous prouvons l’existence d’une solution à un problème d’optimisation sur les flux extérieurs. Nous présentons dans le chapitre 3comment ce modèle a été adapté et calibré sur des données expérimentales. La Partie II est consacrée à des questions reliées au calcul de la structure électronique de matériaux cristallins. Nous rappelons dans le chapitre 4 certains résultats classiques relatifs à la décomposition spectrale d’opérateurs de Schrödinger périodiques. Dans le chapitre 5, nous tentons de répondre à la question suivante : est-il possible de déterminer un potentiel périodique tel que les premières bandes d’énergie de l’opérateur de Schrödinger associé soient aussi proches que possible de certaines fonctions cibles ?Nous montrons théoriquement que la réponse à cette question est positive lorsque l’on considère la première bande de l’opérateur et des potentiels unidimensionnels appartenant à un espace de mesures périodiques bornées inférieurement en un certain sens. Nous proposons également une méthode adaptative pour accélérer la procédure numérique de résolution du problème d’optimisation. Enfin, le chapitre 6 traite d’un algorithme glouton pour la compression de fonctions de Wannier en exploitant leurs symétries. Cette compression permet, entre autres, d’obtenir des expressions analytiques pour certains coefficients de tight-binding intervenant dans la modélisation de matériaux 2D / This thesis includes two independent parts, both motivated by mathematical modeling and numerical simulation of photovoltaic devices. Part I deals with cross-diffusion systems of partial differential equations, modeling the evolution of concentrations or volume fractions of several chemical or biological species. We present in Chapter 1 a succinct introduction to the existing mathematical results about these systems when they are defined on fixed domains. We present in Chapter 2 a one-dimensional system that we introduced to model the evolution of the volume fractions of the different chemical species involved in the physical vapor deposition process (PVD) used in the production of thin film solar cells. In this process, a sample is introduced into a very high temperature oven where the different chemical species are injected in gaseous form, so that atoms are gradually deposited on the sample, forming a growing thin film. In this model, both the evolution of the film surface during the process and the evolution of the local volume fractions within this film are taken into account, resulting in a cross-diffusion system defined on a time dependent domain. Using a recent method based on entropy estimates, we show the existence of weak solutions to this system and study their asymptotic behavior when the external fluxes are assumed to be constant. Moreover, we prove the existence of a solution to an optimization problem set on the external fluxes. We present in Chapter3 how was this model adapted and calibrated on experimental data. Part II is devoted to some issues related to the calculation of the electronic structure of crystalline materials. We recall in Chapter 4 some classical results about the spectral decomposition of periodic Schrödinger operators. In text of Chapter 5, we try to answer the following question: is it possible to determine a periodic potential such that the first energy bands of the associated periodic Schrödinger operator are as close as possible to certain target functions? We theoretically show that the answer to this question is positive when we consider the first energy band of the operator and one-dimensional potentials belonging to a space of periodic measures that are lower bounded in certain ness. We also propose an adaptive method to accelerate the numerical optimization procedure. Finally, Chapter 6 deals with a greedy algorithm for the compression of Wannier functions into Gaussian-polynomial functions exploiting their symmetries. This compression allows, among other things, to obtain closed expressions for certain tight-binding coefficients involved in the modeling of 2D materials
Identifer | oai:union.ndltd.org:theses.fr/2017PESC1046 |
Date | 19 December 2017 |
Creators | Bakhta, Athmane |
Contributors | Paris Est, Cances, Eric, Lelièvre, Tony |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0156 seconds