Las superficies (2 - variedad conexa) homeomorfas a un abierto de la esfera S2, son llamadas superficies topológicamente planas. En esta tesis, caracterizamos a estas superficies y estudiamos la conexión entre estas características.
Es claro que el plano y la esfera son planas. Notemos que una característica que presentan estas dos superficies, es que ambas satisfacen el famoso Teorema de la Curva de Jordan, i.e., el complemento de cualquier curva cerrada simple en el plano o la esfera, tiene exactamente dos componentes conexas. Otra cualidad que se exhibe en estas dos superficies, es que toda 1-forma diferencial de clase C1 cerrada con soporte compacto necesariamente es exacta.
Finalmente, describimos la relación que mantienen estas características, además, obtenemos un resultado de rigidez. A saber, una superficie de Riemann homeomorfa a un abierto de S2 es biholomorfa a una abierto de la esfera de Riemann. / Tesis
Identifer | oai:union.ndltd.org:PUCP/oai:tesis.pucp.edu.pe:20.500.12404/15594 |
Date | 16 January 2020 |
Creators | Llanos Valencia, Héctor Aquiles |
Contributors | Zapata Samanez, Jesús Abad |
Publisher | Pontificia Universidad Católica del Perú, PE |
Source Sets | Pontificia Universidad Católica del Perú |
Language | Spanish |
Detected Language | Spanish |
Type | info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Rights | Atribución 2.5 Perú, info:eu-repo/semantics/openAccess, http://creativecommons.org/licenses/by/2.5/pe/ |
Page generated in 0.0189 seconds