Return to search

Forward plus rendering performance using the GPU vs CPU multi-threading. : A comparative study of culling process in Forward plus

Context. The rendering techniques in games have the goal of shading the scene with as high of a quality as possible while being as efficient as possible. With more advanced tools being developed such as a compute shader. It has allowed for more efficient speed up of the shading process. One rendering technique that makes use of this, is Forward plus rendering. Forward plus rendering make use of a compute shader to perform a culling pass of all the lights. However, not all computers can make use of compute shaders. Objectives. The aims of this thesis are to investigate the performance of using the CPU to perform the light culling required by the Forward plus rendering technique, comparing it to the performance of a GPU implementation. With that, the aim is also to explore if the CPU can be an alternative solution for the light culling by the Forward plus rendering technique. Methods. The standard Forward plus is implemented using a compute shader. After which Forward plus is then implemented using CPU multithreaded to perform the light culling. Both versions of Forward plus are evaluated by sampling the frames per second during the tests with specific properties. Results. The results show that there is a difference in performance between the CPU and GPU implementation of Forward plus. This difference is fairly significant as with 256 lights rendered the GPU implementation has 126% more frames per second over the CPU implementation of Forward plus. However, the results show that the performance of the CPU implementation of Forward plus is viable. As the performance stays above 30 frames per second with less than 2048 lights in the scene. The performance also outperforms the performance of basic Forward rendering. Conclusions. The conclusion of this thesis shows that multi-threaded CPU can be used for culling lights for Forward plus rendering. It is also a viable chose over basic Forward rendering. With 64 lights the CPU implementation performs with 133% more frames per second over the basic Forward rendering.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-14894
Date January 2017
CreatorsRahm, Marcus
PublisherBlekinge Tekniska Högskola, Institutionen för kreativa teknologier
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0016 seconds