Submitted by MARCIA ROVADOSCHI (marciar@unifra.br) on 2018-08-17T19:22:30Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_BibianaCulauLopes.pdf: 2194937 bytes, checksum: 262e67bf2660f0e0bc2210c458d84e70 (MD5) / Made available in DSpace on 2018-08-17T19:22:30Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_BibianaCulauLopes.pdf: 2194937 bytes, checksum: 262e67bf2660f0e0bc2210c458d84e70 (MD5)
Previous issue date: 2017-03-31 / One of the most common methods applied to heavy metal removal from contaminated aqueous solutions is adsorption through materials like activated carbon, and silica. In general, those materials are efficient and possible to reuse, although after their lifespan they become an environment liability, especially if inappropriately discharged. So that, it is seeking for materials that show more efficiency, that are easily regenerated, reusable and that generate less environmental impact. It is promising the use of graphene oxide (GO) as an adsorbent for environmental pollutants. GO with metallic nanoparticles attached to it, they confer magnetic features to GO, which makes it separation from the aqueous solution easy. In this study it was synthesized graphene oxide through Hummers & Offeman (1958) adapted method. Synthesized GO as well as commercial graphene oxide (Sigma) were submitted to hydrothermal process for insertion of ferrite (NiFe3O4) in its structure, then forming a nanocomposite NiFe2O4/GO. Nanomaterials were characterized by DRX, FTIR, Raman spectroscopy, MEV, BET and magnetization test, which all prove the formation and magnetization of the material. A solution of 100 mg.L-1 concentration of potassium dichromate (K2Cr2O7), was used as Cr(VI) source, for adsorption tests. The results show great efficiency of adsorption, which was stable in 150 min of stirring for more concentrated solutions of Cr(VI). It was used 500 mg.L-1 concentration of potassium dichromate in the photocatalytic process, which resulted in significant decrease of Cr(VI) and release of Cr(III) in the solution. The results obtained show high efficiency in the adsorption and the removal mechanism defined was through electrostatic attraction, due to the difference between charges of adsorbent and pollutant. A solution with 0.03 g of commercial graphene oxide decorated with ferrite and potassium dichromate in a concentration of 80 mg.L-1, adsorption reaction achieved the equilibrium, approximately, 20 minutes after the reaction started. When tested concentrations of 100, 80 and 40 mg.L-1 of potassium dichromate, the reaction achieved the equilibrium in 30 minutes. Adsorption reactions in concentrations of 300, 250 and 150 mg.L-1 of potassium dichromate stabilized 150 minutes after the reaction started. All tests were done with a fixed mass of 0.30 g of commercial graphene oxide decorated with ferrite. The results indicated that the major efficiency, when higher concentrations of Cr(VI)
9
source, depends on the adjustment of adsorbent added. Photocatalytic reaction promoted the reduction of Cr(VI) to Cr(III), which was proved through the difference in absorbance solution. The removal mechanism was through difference between charges, photocatalytic reaction also promoted the desorption of Cr(III) from the adsorbent surface, as it has negatively charged, they naturally repel. / Um dos métodos mais comuns aplicado para remoção de metais pesados de soluções aquosas contaminadas é por adsorção através de materiais, como carvão ativado e sílica. Em geral esses materiais são eficientes e possibilitam a reutilização, porém ao final de sua vida útil se tornam passivo ambiental, principalmente se não forem descartados de forma correta. Desta forma busca-se por materiais que apresentem maior eficiência, facilidade de regeneração, de reutilização e que gerem menor impacto ambiental. O uso do óxido de grafeno como adsorvente, para remoção de poluentes de amostras ambientais, tem se mostrado promissor, principalmente se tratando de íons de metais. Quando o óxido de grafeno é agregado a nanopartículas metálicas, isso promove um caráter magnético, o que facilita a separação deste da solução aquosa. No presente estudo foi sintetizado o óxido de grafeno através do método adaptado de Hummers, Offeman (1958). O óxido de grafeno sintetizado, assim como óxido de grafeno comercial (Sigma), foram submetidos a um processo para inserção de ferrita (NiFe3O4) em sua estrutura via processo hidrotermal, formando o nanocompósito NiFe2O4/GO. Os nanomateriais obtidos foram caracterizados por difração de raios-x, espectroscopia no infrevermelho, espectroscopia Raman, microscopia eletrônica de varredura, teste de Brunauer-Emmett-Taller e teste de magnetização, os quais comprovam formação do óxido de grafeno e da magnetização do mesmo. Para os testes de adsorção e fotocatálise, utilizou-se solução de dicromato de potássio (K2Cr2O7) como fonte de Cr(VI). Os resultados obtidos demonstram alta eficiência de adsorção e o mecanismo de remoção definido foi por atração eletrostática, devido a diferença de cargas entre o adsorvente e o poluente. Para uma solução contendo 0,30 g de óxido de grafeno comercial decorado com ferrita e com uma concentração de 80 mg.L-1 de dicromato de potássio, a reação de adsorção atingiu o equilíbrio aproximadamente 20 minutos depois do inicio do processo. Quando testadas as concentrações de 100, 80 e 40 mg.L-1 de dicromato de potássio, a reação atingiu o equilíbrio em 30 minutos. As reações de adsorção em concentrações de 300, 250 e 150 mg.L-1 de dicromato de potássio estabilizaram depois de 150 minutos depois do inicio da reação. Todos os testes foram realizados com a quantidade fixa de 0,30 g de óxido de grafeno comercial decorado com ferrita. Os resultados indicam que a maior eficiência,
7
quando em maiores concentrações de fonte de Cr(VI), depende do ajuste na quantidade de adsorvente adicionado. A reação de fotocatálise promoveu a redução do Cr(VI) para Cr(III), o que foi comprovado através da diferença medida nas absorbâncias da solução. O mecanismo de remoção foi por por diferença de cargas, a reação de fotocatálise promove também a dessorção do Cr(III) da superfície do adsorvente, já que esse é carregado negativamente, eles se repelem naturalmente.
Identifer | oai:union.ndltd.org:IBICT/oai:tede.universidadefranciscana.edu.br:UFN-BDTD/557 |
Date | 31 March 2017 |
Creators | Lopes, Bibiana Culau |
Contributors | Mortari, Sérgio Roberto, Müller, Edson Irineu, Rocha, Anderson de Araújo, Gomes, Patrícia |
Publisher | Centro Universitário Franciscano, Programa de Pós-Graduação em Nanociências, UNIFRA, Brasil, Biociências e Nanomateriais |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional Universidade Franciscana, instname:Universidade Franciscana, instacron:UFN |
Rights | http://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds