Return to search

Étude d'algorithmes d'apprentissage artificiel pour la prédiction de la syncope chez l'homme

La syncope, dont l'origine peut ne pas être clairement définie, est considérée comme une pathologie fréquente. Dans ce cas et lorsque les épisodes sont répétés, le patient peut être amené à réaliser le test de la table d'inclinaison. Cet examen appelé tilt-test, est une méthode reconnue pour recréer les conditions dans lesquelles le patient ressent les symptômes de la syncope. Cependant, le principal problème de ce test est sa durée, qui peut atteindre une heure. Dès lors, pour des raisons de coût et de bien-être des patients, il paraît important de pouvoir réduire sa durée. C'est dans cet objectif que s'inscrivent les travaux réalisés dans le cadre de cette thèse, qui tentent de prédire l'apparition des symptômes liés à la syncope, et ce, le plus tôt possible. Durant nos recherches, deux axes sont ressortis naturellement : la fouille de données et le dé- veloppement de modèles capables de prédire le résultat du tilt-test. Ces deux axes partagent des méthodes issues de l'apprentissage articiel, qui permettent d'acquérir et d'extraire des connaissances à partir d'un ensemble d'observations signicatif. La littérature propose tout un ensemble de méthodes, qui nous ont permis de mettre en évidence certaines caractéristiques pertinentes, de manière à construire des modèles parcimonieux et robustes. Ces derniers ont permis d'obtenir des résultats intéressants pour la prédiction du résultat du tilt-test au terme notamment, des dix premières minutes de l'examen. Ces performances ont pu être considérablement améliorées par le développement de nouvelles techniques de fouille de données, permettant d'extraire très e- cacement de la connaissance. Les méthodes mises en place s'articulent autour de la sélection de variables et de l'interprétation de projections non linéaires. Ces méthodes, bien que développées autour de notre thématique, se sont montrées reproductibles lors de tests sur d'autres ensembles de données.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00465008
Date08 July 2009
CreatorsFeuilloy, Mathieu
PublisherUniversité d'Angers
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds