Return to search

Système d'information décisionnel sur les interactions environnement-santé : cas de la Fièvre de la Vallée du Rift au Ferlo (Sénégal) / Decision-making system on environment and health interactions : case of the Rift Valley Fever in Ferlo (Senegal)

Notre recherche se situe dans le cadre du projet QWECI (Quantifying Weather and Climate Impacts on Health in Developing Countries, UE FP7) en partenariat avec l’UCAD, le CSE et l’IPD, autour de la thématique environnement-santé avec comme cas pratique les maladies à vecteurs au Sénégal et plus particulièrement la Fièvre de la Vallée du Rift (FVR). La santé des populations humaines et animales est souvent fortement influencée par l’environnement. D’ailleurs, la recherche sur les facteurs de propagation des maladies à transmission vectorielle, telle que la FVR, prend en compte cette problématique dans sa dimension aussi bien physique que socio-économique. Apparue en 1912-1913 au Kenya, la FVR est une anthropo-zoonose virale répandue dans les régions tropicales qui concerne principalement les animaux mais dont les hommes peuvent aussi être touchés. Au Sénégal, la zone à risque concerne en majorité la vallée du fleuve Sénégal et la zone sylvo-pastorale du Ferlo. Bien que de climat sahélien, le Ferlo regorge de nombreuses mares qui sont des sources d’approvisionnement en eau pour les hommes et le bétail mais également les gîtes larvaires pour les vecteurs potentiels de la FVR. La maîtrise de la FVR, carrefour de trois (03) grands systèmes (agro-écologique, pathogène, économique/sanitaire/social), implique nécessairement la prise en compte de plusieurs paramètres si l’on veut d’abord comprendre les mécanismes d’émergence mais aussi envisager le travail de modélisation du risque. Notre travail porte sur le processus décisionnel pour quantifier l’utilisation de données sanitaires et environnementales dans l’évaluation de leur impact pour le suivi de la FVR. Les équipes de recherche impliquées produisent des données lors de leurs enquêtes de terrains et des analyses de laboratoire. Ce flot de données croissant devrait être stocké et préparé à des études corrélées grâce aux nouvelles techniques de stockage que sont les entrepôts de données. A propos de l’analyse des données, il ne suffit pas de s’appuyer seulement sur les techniques classiques telles que les statistiques. En effet, la valeur ajoutée de contribution sur la question s’oriente vers une analyse prédictive combinant à la fois les techniques agrégées de stockage et des outils de traitement. Ainsi, pour la découverte d’informations, nouvelles et pertinentes à priori non évidentes, il est nécessaire de s’orienter vers la fouille de données. Par ailleurs, l’évolution de la maladie étant fortement liée à la dynamique spatio-temporelle environnementale des différents acteurs (vecteurs, virus et hôtes), cause pour laquelle nous nous appuyons sur les motifs spatio-temporels pour identifier et mesurer certaines interactions entre les paramètres environnementaux et les acteurs impliqués. Grâce au processus décisionnel, les résultats qui en découlent sont multiples :i. suivant la formalisation de la modélisation multidimensionnelle, nous avons construit un entrepôt de données intégré qui regroupe l’ensemble des objets qui participent à la gestion du risque sanitaire – ce modèle peut être généralisé aux maladies à vecteurs ;ii. malgré une très grande variété de moustiques, les Culex de type neavei et les Aedes de type ochraceus et vexans sont les vecteurs potentiels de la FVR les plus présents dans la zone d’étude et ce, durant la saison des pluies, période la plus sujette à des cas suspects ; la période à risque reste quand même le mois d’octobre ;iii. les mares analysées ont quasiment le même comportement, mais des variations significatives subsistent par endroits.Ce travail de recherche démontre une fois de plus l’intérêt pour la mise en évidence des relations entre les données environnementales et la FVR à partir de méthodes de fouille de données, pour la surveillance spatio-temporelle du risque d’émergence. / Our research is in part of the QWeCI european project (Quantifying Weather and Climate Impacts on Health in Developing Countries, EU FP7) in partnership with UCAD, the CSE and the IPD, around the theme of environmental health with the practical case on vector-borne diseases in Senegal and particularly the Valley Fever (RVF). The health of human and animal populations is often strongly influenced by the environment. Moreover, research on spread factors of vector-borne diseases such as RVF, considers this issue in its dimension both physical and socio-economic. Appeared in 1912-1913 in Kenya, RVF is a widespread viral anthropo-zoonosis in tropical regions which concerns animals but men can also be affected. In Senegal, the risk area concerns mainly the Senegal River Valley and the forestry-pastoral areas Ferlo. With a Sahelian climate, the Ferlo has several ponds that are sources of water supply for humans and livestock but also breeding sites for potential vectors of RVF. The controlling of the RVF, which is crossroads of three (03) large systems (agro-ecological, pathogen, economic/health/social), necessarily entails consideration of several parameters if one wants to first understand the mechanisms emergence but also consider the work on risk modeling. Our work focuses on the decision making process for quantify the use of health data and environmental data in the impact assessment for the monitoring of RVF. Research teams involved produce data during their investigations periods and laboratory analyzes. The growing flood of data should be stored and prepared for correlated studies with new storage techniques such as datawarehouses. About the data analysis, it is not enough to rely only on conventional techniques such as statistics. Indeed, the contribution on the issue is moving towards a predictive analysis combining both aggregate storage techniques and processing tools. Thus, to discover information, it is necessary to move towards datamining. Furthermore, the evolution of the disease is strongly linked to environmental spatio-temporal dynamics of different actors (vectors, viruses, and hosts), cause for which we rely on spatio-temporal patterns to identify and measure interactions between environmental parameters and the actors involved. With the decision-making process, we have obtained many results :i. following the formalization of multidimensional modeling, we have built an integrated datawarehouse that includes all the objects that are involved in managing the health risk - this model can be generalized to others vector-borne diseases;ii. despite a very wide variety of mosquitoes, Culex neavei, Aedes ochraceus and Aedes vexans are potential vectors of FVR. They are most present in the study area and, during the rainy season period which is most prone to suspected cases; the risk period still remains the month of October;iii. the analyzed ponds have almost the same behavior, but significant variations exist in some points.This research shows once again the interest in the discovery of relationships between environmental data and the FVR with datamining methods for the spatio-temporal monitoring of the risk of emergence.

Identiferoai:union.ndltd.org:theses.fr/2015PA066461
Date25 September 2015
CreatorsBouba, Fanta
ContributorsParis 6, Université Cheikh Anta Diop de Dakar, Cambier, Christophe, Ndiaye, Samba
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench, English
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds