Return to search

Novel methods for 3-D semi-automatic mapping of fracture geometry at exposed rock faces

<p>To analyse the influence of fractures on hydraulic andmechanical behaviour of fractured rock masses, it is essentialto characterise fracture geometry at exposed rock faces. Thisthesis describes three semi-automatic methods for measuring andquantifying geometrical parameters of fractures, and aims tooffer a novel approach to the traditional mapping methods.</p><p>Three techniques, i.e. geodetic total station, close-rangephotogrammetry and 3-D laser scanner, are used in this studyfor measurement of fracture geometry. The advantages of thesetechniques compared with the traditional method are: i)fracture geometry is quantified semi-automatically in threedimensions; ii) fracture measurements are obtained withoutphysically touching the rock face; iii) the accuracy offracture measurements is improved comparing with thetraditional method; iv) both quantitative and spatial analysisof fracture geometry is possible; v) it offers a way todigitally record the rock surface in three dimensions and invisual format as a database for other applications.</p><p>The common approach for fracture mapping by using the noveltechniques comprises three main steps: i) capturing 3-Dco-ordinates of target points; ii) quantifying geometricalparameters of fractures from the recorded co-ordinates; iii)documenting the results of fracture mapping. The details ofcapturing 3-D co-ordinates of target points are introduced. Anew algorithm is developed for computing orientation offracture planes. A multiple approach for documenting thefracture mapping results is presented. Application of thesetechniques for measuring and quantifying the geometricalparameters of fractures, such as orientation, trace length andsurface roughness, are demonstrated.</p><p>The presented methods can greatly improve the quality offracture measurements and avoid the drawbacks inherent intraditional methods. However, it can not replace the humancapacity to filter out and interpret the large amount ofgeometrical information displayed on the rock faces. Themethods may offer an assistance to engineers or geologists inobtaining as much information as possible about the geometryand orientation of rock fractures for rock engineeringapplications.</p><p><b>Keywords:</b>3-D laser scanner, close-range photogrammetry,engineering geology, fracture geometry, fracture mapping, rockengineering, rock faces, rock mechanics, three-dimension, totalstation.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:kth-3181
Date January 2001
CreatorsFeng, Quanhong
PublisherKTH, Civil and Environmental Engineering, Institutionen för anläggning och miljö
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, text
RelationTrita-AMI. PHD, ; 1044

Page generated in 0.0021 seconds