Vid bestämmelse av vilket värme- och kylsystem som ska användas i fastigheter så finns det flertalet aspekter som går att ta hänsyn till. Tidigare har det varit högt fokus på energi och ekonomi, men med ökat fokus på hållbarhet och miljön både globalt och i Sverige har det blivit allt mer viktigt att hitta robusta lösningar som presterar inom samtliga av dessa områden. Helenius Ingenjörsbyrå som är installationskonsulter inom VVS-, miljö-, och energiområdet vill ligga i framkant när det kommer till energi och miljö. I samband med högre krav på hållbarhet och miljö är det av intresse för Helenius att se hur konventionella värme- och kylsystem presterar när de ställs inför energiprestanda, klimatpåverkan, ekonomi och återbruk. Utöver detta, även se hur resultatet för systemens prestanda påverkas av den geografiska placeringen genom att utreda dessa områden på lokal nivå (i Uppsala) och på generell nivå. Generell nivå motsvarar ett medelvärde för Sverige. Detta examensarbete har därmed tagit fram en arbetsmetodik för att utreda dessa områden och lämpliga system för ändamålet. Ändamålet i detta arbete handlar om att förse värme och kyla till en kontorsfastighet med tillhörande verksamheter där det finns en konstant kyllast över året. De fyra systemuppställningar som togs fram och utreddes i arbetet var: kylmaskin med värmeåtervinning från kondensorvärmen och separat fjärrvärmesystem (Modell 1). Andra uppställningen var kylmaskin med fjärrvärme och ingen möjlighet till värmeåtervinning (Modell 2). System tre var fjärrkyla och fjärrvärme (Modell 3) och system fyra borrhålslager som utnyttjar frikyla och bergvärmepumpar (Modell 4). Resultatet visar att Modell 4 var mest fördelaktigt för total köpt energi hos konsument både vid utredning lokalt och generellt. Den utredda EROI (Energy Return On Investment) visade på fördel hos Modell 3 både lokalt och generellt. Lägst klimatpåverkan i form av totalt utsläppta koldioxidekvivalenter från livscykelanalysen hade Modell 4 när det utreddes på lokal nivå, i Uppsala. Generellt i Sverige så var det istället Modell 1 som hade lägst klimatpåverkan. Systemet med lägst livscykelkostnad var Modell 1 när det utreddes lokalt för Uppsala, och i det generella fallet hade Modell 3 lägst livscykelkostnad. Kostnadsfördelningen mellan systemen visar att Modell 4 innehar en större grundinvestering men var därefter mer oberoende av marknadens energipriser, underhåll- och driftkostnader. De andra systemen hade lägre investeringskostnader och lägger större delen av livscykelkostnaden på energi-, drift- och underhållskostnader. Det framgick också att Modell 4 var den uppställning som var minst känslig mot ändringar i energipriser, vilket kan vara en säkerhetsfaktor för investeringar över lång tid. Arbetet utredde återbrukspotentialen hos systemen. Resultatet framgick till att återbruk är fortfarande en så pass ny arbetsmetodik och att det ännu inte finns tillräckligt mycket erfarenhet och generella metoder för att ta fram en exakt potential för återbruk hos icke enhetliga produkter. Återbrukspotentialen hos systemen i arbetet togs fram baserat på en fördelning hos delkomponenterna i systemet och samtliga viktades lika. Detta medförde att Modell 4 hade högst återbrukspotential på 53 %, förutsatt att de installerade borrhålen går att återbruka. Finns det inte möjlighet till återbruk hos borrhålen så sjönk resultatet till 28 %. Resterande system uppnådde 40 % återbrukspotential. Resultaten som togs fram i arbetet visar på att systemen inte ska jämföras direkt mellan lokalt och generellt fall. Detta på grund av att storleksordningen i resultaten samt vilket system som har lägst kontra högst värde i de olika fallen ändras. Det går att använda de generella resultaten och jämföra system på generell nivå men då krävs det också att diskussionen är på generell nivå. Detta medför vikten av att för varje enskilt fall kontrollera de lokala förutsättningarna för varje system. Rekommendationen för val av systemen blir därmed projektspecifik beroende på vilket område som värderas högst: energi, klimat, ekonomi eller återbruk. / When determining which heating and cooling system to use in buildings, there are several aspects that can be taken into account. In the past there has been a high focus on energy and economy, but with an increased focus on sustainability and the environment both globally and in Sweden, it has become increasingly important to find robust solutions that perform in all areas. Helenius Ingenjörsbyrå, which are installation consultants in the HVAC, environmental and energy fields, wants to be at the forefront when it comes to energy and the environment. In connection with higher demands on sustainability and the environment, it is of interest to Helenius to see how conventional heating and cooling systems perform when evaluated with respect to energy performance, climate impact, economy and recycling. In addition to this, also see how the result of the systems performance is affected by its geographical location by investigating these areas at a local level (in Uppsala) and at a general level. General level corresponds to an average value for Sweden. This thesis has thus developed a methodology to investigate these areas and suitable systems for the purpose. This work will investigate an office property where heating and cooling is supplied by different conventional heating and cooling systems. The building also has a constant cooling load throughout the year. The four system setups that were developed and investigated in the work were: cooling machine with heat recovery from the condenser heat and separate district heating system (Model 1). The second set-up was a cooling machine with district heating and no option for heat recovery (Model 2). System three was district cooling and district heating (Model 3) and system four borehole storage that utilizes free cooling and heat pumps (Model 4). The result shows that Model 4 was the most beneficial for total energy purchased by the consumer both when investigated locally and generally. The investigated EROI (Energy Return On Investment) showed an advantage for Model 3 both locally and generally. Model 4 had the lowest climate impact in terms of total emitted carbon dioxide equivalents from the life cycle assessment when it was investigated at a local level, in Uppsala. Generally in Sweden, it was instead Model 1 that had the lowest climate impact. The system with the lowest life cycle cost was Model 1 when it was investigated locally for Uppsala, and in the general case Model 3 had the lowest life cycle cost. The distribution of costs between the systems shows that Model 4 has a larger initial investment but was subsequently more self-sustaining and also independent of the markets energy prices. The other systems had lower investment costs and spend most of the life cycle cost on energy, operation and maintenance costs. It also appeared that Model 4 was the setup that held up the most against changes in energy prices, which can be a safety factor for investments over the long term. The work investigated the re-use potential of the systems and the result showed that re-use is still such a new work methodology and that there is not yet enough experience and general methods to produce a fully accurate potential for re-use of non-uniform products. The re-use potential of the systems in the work was developed based on a distribution of the sub-components of the system and all were weighted equally. This meant that Model 4 had the highest re-use potential of 53 %, assuming that the installed boreholes can be re-used. If there is no possibility of re-use at the boreholes, the result dropped to 28 %. Remaining systems achieved 40 % re-use potential. The results produced in this work show that a direct comparison should not be made between local and general cases. This is because the order of magnitude in the results and which system has the lowest versus highest value in the various cases changes. It is possible to use the general results and compare systems on a general level, but then it is also required that the discussion is on a general level. This entails the importance of checking for each individual case the local conditions for each system. The recommendation for what system to go for will therefore be project specific depending on which area is valued the most: energy, climate impact, economic costs or re-use.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-98686 |
Date | January 2023 |
Creators | Lindé, Gusten |
Publisher | Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds