The primary reason for the wireless technology evolution is towards building capacity and obtaining higher data rates. Enclosed locations, densely populated campus, indoor offices, and device-to-device communication will require radios that need to operate at data rates up to 10 Gbps. In the next few years, a new generation of communication systems would emerge to better handle the ever-increasing demand for much wider bandwidth requirements. Simultaneously, key factors such as size, cost, and energy consumption play a distinctive role towards shaping the success of future wireless technologies. In the perspective of 3GPP 5G next generation wireless communication systems, the X band was explicitly targeted with a vast range of applications in point to point radio, point to multi point radio, test equipment, sensors and future wireless communication.
An X-band RF front-end circuit for next generation wireless network applications is presented in this work. It details the design of a low noise amplifier and a power amplifier for X band operation. The designed amplifiers were integrated with a wideband single-pole-double-throw switch to achieve an overall front-end structure for 10 GHz. The design was carried out and sent for fabrication using a GaN 0.15µm process provided by NRC, a novel design kit. Due to higher breakdown voltage, high power density, high efficiency, high linearity and better noise performance, GaN HEMTs are a suitable choice for future wireless communication. Thus, the assumption is to further explore capabilities of this process in front-end design for future wireless communications.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/34622 |
Date | January 2016 |
Creators | Saha, Sumit |
Contributors | Yagoub, Mustapha, Amaya, Rony |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds