La transition fleur-fruit, appelée nouaison, est déclenchée par la pollinisation des fleurs et ce processus est essentiel pour cycle reproducteur des plantes, la formation des semences et le rendement de production. Les mécanismes moléculaires contrôlant cette importante transition développementale ont été peu explorés. Les marques histones et la méthylation de l'ADN sont les deux principaux modes de régulation épigénétique, mais à ce jour, leurs contributions respectives à la reprogrammation transcriptionnelle qui est associée au programme d’initiation des fruits charnus n’ont pas fait l’objet d’aucune étude sur aucune espèce de plante. Afin d’explorer l’importance dans la transition fleur-fruit de ces deux types de régulation épigénétique, des approches de transcriptomique "genome-wide", de ChIP-seq se et de séquençage bisulfite d'ADN ont été mises en place chez la tomate, une espèce économique majeure et un modèle d’étude pour les fruits charnus. Les résultats révèlent une corrélation étroite entre le repositionnement des marques histones et les changements observés de l'expression génique globale. L’étude montre aussi que les marques H3K9ac et H3K4me3 agissent en synergie pour activer la transcription génique, alors que la marque H3K27me3 a un effet répressif. A l’inverse, il n’y a pas de corrélation entre les variations de la méthylation de la cytosine et l’évolution des profils transcriptomiques. Il ressort donc que ce sont les changements au niveau des marques histones plutôt que de la méthylation de l'ADN qui constituent le moteur principal de la reprogrammation génétique associée au processus de transition fleur-fruit chez la tomate. En concordance avec cette idée, le niveau d'expression des gènes associés à l’initiation du fruit, tels que ceux liés au métabolisme hormonal, à la division cellulaire ou au développement embryonnaire, est corrélé avec les modifications des marques H3K9ac ou H3K4me3, mais pas avec la méthylation de l'ADN. En outre, l'étude comparative des profils transcriptomiques associés à la formation du fruit dépendant et indépendant de la pollinisation révèle l'intervention complexe de multiples voies de signalisation hormonales. Au total, notre étude présente un nouvel aperçu du contrôle de la reprogrammation génétique nécessaire à l’initiation du développement du fruit et révèle le rôle important du contrôle épigénétique dans ce processus de transition développementale. Dans le même temps, l’étude identifie un groupe de gènes impliqués dans la régulation épigénétique qui offrent des cibles potentielles pour les programmes d’amélioration de la nouaison des fruits, un processus majeur affectant le rendement de production / The flower-to-fruit transition, so-called fruit setting, is triggered by flower pollination and this process is essential for plant reproductive success, seed formation and crop yield. The underlying molecular mechanisms controlling this developmental transition remain unclear. Histone marking and DNA methylation are the main epigenetic modes for genetic reprogramming, however, their respective contribution to the fruit set-associated transcriptomic reprogramming is also unknown. To address the contribution of the two types of epigenetic regulation to fruit set, genome-wide transcriptomic profiling, ChIP-sequencing and DNA bisulfite sequencing were applied to tomato, a major economic crop and a model system for fleshy fruit. The study emphasizes the tight correlation between histone repositioning and gene expression changes revealing that H3K9ac and H3K4me3 histone marks synergistically promote gene transcription, whereas H3K27me3 marking has a repressive effect. We concluded that changes in histone marks rather than in DNA methylation are the main drivers of genetic reprogramming associated with the fruit set transition in tomato, and H3K9ac and H3K4me3 marking is the primary players in this control mechanism. Consistently, the expression level of fruit set-associated genes such as those related to hormone metabolism, cell division, and embryo development correlated with changes in H3K9ac or H3K4me3 marking, but not with DNA methylation. In addition, comparative study of transcriptomic profiling between pollination-dependent and -independent fruit set, uncovered the complex intervention of multiple hormone signaling pathways involved in the flower-to-fruit transition. Auxin appears as the central hormone triggering the extensive transcriptomic reprogramming associated with the initiation of early fruit growth. Altogether, the study provides new insight into the control of gene reprogramming underlying fruit the shift from flower to fruit and uncovers a set of genes encoding modifiers of epigenetic marks which may provide new targets for breeding programs aiming to improve fruit setting, a major process impacting crop yield.
Identifer | oai:union.ndltd.org:theses.fr/2017INPT0052 |
Date | 04 July 2017 |
Creators | Hu, Guojian |
Contributors | Toulouse, INPT, Bouzayen, Mondher, Zouine, Mohamed |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0031 seconds