Return to search

Carbon nanotubes as structural templates within poly(vinyl alcohol) composite fibers

Because the gel-spinning process has the potential to yield fibers of high strength and high modulus, this technique was employed to process continuous filaments of PVA/CNT, having CNTs at ¡Ü1 weight percent of polymer. A gel aging technique was employed with the goal of increasing the draw ratio for composite fibers and for promoting the development of crystalline PVA. Since residual solvent can lower the mechanical properties of drawn fibers, solvent phases of water and dimethyl sulfoxide (DMSO) within the drawn fibers were also characterized. As embedded SWNTs were uniaxially aligned along the drawn fiber axis, they were found to induce preferential alignment in the PVA side groups as well as for the residual solvent. This was attributed to charge transfer between SWNT and the respective functional groups. This orientation behavior has been characterized using Raman spectroscopy and infra-red dichroism. The behaviors of gel crystallization and solvent freezing within PVA/CNT dispersions were studied using thermal analysis and rheology. Carbon nanotubes were found to nucleate PVA crystallization in the gel state. PVA/CNT gel aging behavior was characterized by structural, thermal, and mechanical, and dynamic mechanical means. Gel aging was shown to increase the draw ratio of PVA/CNT fibers, and the development of the higher temperature melting peak was attributed to the draw induced ordering of PVA along CNTs. The scanning electron micrographs of fractured PVA/CNT fibers showed fibrils having an average diameter of about 22 nm. The storage modulus of aged gel was a function of solvent diffusion, which changed with aging time. CNTs were shown to have stabilized the gel network, as characterized by the dynamic mechanical properties, and to provide nucleation sites for the ordering of PVA chains, as characterized by WAXD.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/45921
Date12 November 2012
CreatorsFord, Ericka N. J.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0025 seconds