Return to search

Difusões dependendo diferenciavelmente de métricas e conexões / Diffusions depending smoothly of metrics and connections

Orientador: Pedro José Catuogno / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-23T19:39:42Z (GMT). No. of bitstreams: 1
Neves_EduardodeAmorim_D.pdf: 2575933 bytes, checksum: c52665fabd4cb103ecdff3106990155e (MD5)
Previous issue date: 2013 / Resumo: Esta tese está dividida em duas partes. Na primeira parte, faremos uma abordagem probabilística para a teoria de aplicações L-harmônicas em variedades diferenciáveis, passaremos para esse contexto os Teoremas de Liouville, Picard, Elworthy e Dirichlet. Na segunda parte do trabalho, o objetivo é generalizar e caracterizar o conceito de difusão, martingale e movimento Browniano em variedades que estejam munidas por uma família de métricas e conexões que variam diferenciavelmente com o tempo / Abstract: This thesis is divided into two parts. In the first part, we will make a probabilistic approach to the theory of L-harmonic applications on manifolds; we generalize to this context Theorems of Liouville, Picard, Elworthy and Dirichlet. In the second part of the work, the goal is to generalize and characterize the concept of diffusion, martingale and Brownian motion on manifolds that are provided by a family of metrics and connections which depends smoothly on time / Doutorado / Matematica / Doutor em Matemática

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/306331
Date23 August 2018
CreatorsNeves, Eduardo de Amorim, 1982-
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Catuogno, Pedro Jose, 1959-, Ruffino, Paulo Regis Caron, Ledesma, Diego Sebastian, Fukuoka, Ryuichi, Teran, Edson Alberto Coayla
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Format65p. : il., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds