Made available in DSpace on 2015-09-17T15:25:21Z (GMT). No. of bitstreams: 0
Previous issue date: 2015-02-24. Added 1 bitstream(s) on 2015-09-17T15:48:57Z : No. of bitstreams: 1
000844660.pdf: 636201 bytes, checksum: 647b899c35a3224aa18fe06cea51e4fd (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O objetivo deste trabalho e encontrar soluções fracas quase peri odicas para equações diferenciais que podem ser escritas na forma u0(t) = Au(t) + f(u(t); t); t 2 R; onde A e o gerador in nitesimal de um C0 - semigrupo exponencialmente est avel, X e um espa co de Banach e f : X R ! X e uma função apropriada. Para isto, estudaremos as principais propriedades da teoria de semigrupos de operadores lineares limitados e da teoria de fun c~oes quase peri odicas. Al em disso, apresentaremos resultados que garantem a existência e a unicidade de solução para o problema de Cauchy abstrato, utilizando como ferramenta, a teoria de semigrupos / The purpose of this work is to nd almost periodic mild solutions for di erential equations that can be written in the form u0(t) = Au(t) + f(u(t); t); t 2 R; where A is the in nitesimal generator of a exponentially stable C0 - semigroup, X is a Banach space and f : X R ! X is an appropriate function. For this, we will study the main properties of the theory of semigroup of bounded linear operators and the theory of almost periodic functions. Moreover, we will present results that ensure the existence and uniqueness of solution for the abstract Cauchy problem, using as a tool, the semigroup theory
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unesp.br:11449/127744 |
Date | 24 February 2015 |
Creators | Rampasso, Giane Casari [UNESP] |
Contributors | Universidade Estadual Paulista (UNESP), Arita, Andréa Cristina Prokopczyk [UNESP] |
Publisher | Universidade Estadual Paulista (UNESP) |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | 85 f. : il. |
Source | Aleph, reponame:Repositório Institucional da UNESP, instname:Universidade Estadual Paulista, instacron:UNESP |
Rights | info:eu-repo/semantics/openAccess |
Relation | -1, -1 |
Page generated in 0.0025 seconds