FARIAS, Pablo Mayckon Silva. Um estudo sobre as origens da Lógica Matemática e os limites da sua aplicabilidade à formalização da Matemática. 2007. 110 f. Dissertação (Mestrado em ciência da computação)- Universidade Federal do Ceará, Fortaleza-CE, 2007. / Submitted by Elineudson Ribeiro (elineudsonr@gmail.com) on 2016-07-12T14:54:53Z
No. of bitstreams: 1
2007_dis_pmsfarias.pdf: 859405 bytes, checksum: 9d580356cce3820f228499085b2e3cde (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2016-07-20T13:48:23Z (GMT) No. of bitstreams: 1
2007_dis_pmsfarias.pdf: 859405 bytes, checksum: 9d580356cce3820f228499085b2e3cde (MD5) / Made available in DSpace on 2016-07-20T13:48:23Z (GMT). No. of bitstreams: 1
2007_dis_pmsfarias.pdf: 859405 bytes, checksum: 9d580356cce3820f228499085b2e3cde (MD5)
Previous issue date: 2007 / This work is a study about the origins of Mathematical Logic and the limits of its applicability to the formal development of Mathematics. Firstly, Dedekind’s arithmetical theory is presented, which was the first theory to provide a precise definition for natural numbers and to demonstrate relying on it all facts commonly known about them. Peano’s axiomatization for Arithmetic is also presented, which in a sense simplified Dedekind’s theory. Then, Frege’s Begriffsschrift is presented, the formal language from which modern Logic originated, and in it are represented Frege’s basic definitions concerning the notion of number. Afterwards, a summary of important topics on the foundations of Mathematics from the first three decades of the twentieth century is presented, beginning with the paradoxes in Set Theory and ending with Hilbert’s formalist doctrine. At last, are presented, in general terms, Gödel’s incompleteness. theorems and Turing’s computability concept, which provided precise answers to the two most important points in Hilbert’s program, to wit, a direct proof of consistency for Arithmetic and the decision problem, respectively. Keywords: 1. Mathematical Logic 2. Foundations of Mathematics 3. Gödel’s incompleteness theorems / Este trabalho é um estudo sobre as origens da Lógica Matemática e os limites da sua aplicabilidade ao desenvolvimento formal da Matemática. Primeiramente, é apresentada a teoria aritmética de Dedekind, a primeira teoria a fornecer uma definição precisa para os números naturais e com base nela demonstrar todos os fatos comumente conhecidos a seu respeito. É também apresentada a axiomatização da Aritmética feita por Peano, que de certa forma simplificou a teoria de Dedekind. Em seguida, é apresentada a ome{german}{Begriffsschrift} de Frege, a linguagem formal que deu origem à Lógica moderna, e nela são representadas as definições básicas de Frege a respeito da noção de número. Posteriormente, é apresentado um resumo de questões importantes em fundamentos da Matemática durante as primeiras três décadas do século XX, iniciando com os paradoxos na Teoria dos Conjuntos e terminando com a doutrina formalista de Hilbert. Por fim, são apresentados, em linhas gerais, os teoremas de incompletude de Gödel e o conceito de computabilidade de Turing, que apresentaram respostas precisas às duas mais importantes questões do programa de Hilbert, a saber, uma prova direta de consistência para a Aritmética e o problema da decisão, respectivamente.
Identifer | oai:union.ndltd.org:IBICT/oai:www.repositorio.ufc.br:riufc/18511 |
Date | January 2007 |
Creators | Farias, Pablo Mayckon Silva |
Contributors | Maculan Filho, Nelson, Pequeno, Tarcisio Haroldo Cavalcante |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da UFC, instname:Universidade Federal do Ceará, instacron:UFC |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds