Return to search

Outils d'aide à l'optimisation des campagnes d'essais non destructifs sur ouvrages en béton armé / Development of new tools for optimizing non-destructive inspection campaigns on reinforced concrete structures

Les méthodes de contrôle non destructif (CND) sont essentielles pour estimer les propriétés du béton (mécaniques ou physiques) et leur variabilité spatiale. Elles constituent également un outil pertinent pour réduire le budget d'auscultation d'un ouvrage d'art. La démarche proposée est incluse dans un projet ANR (EvaDéOS) dont l'objectif est d'optimiser le suivi des ouvrages de génie civil en mettant en œuvre une maintenance préventive afin de réduire les coûts. Dans le cas du travail de thèse réalisé, pour caractériser au mieux une propriété particulière du béton (ex : résistance mécanique, porosité, degré de Saturation, etc.), avec des méthodes ND sensibles aux mêmes propriétés, il est impératif de développer des outils objectifs permettant de rationaliser une campagne d'essais sur les ouvrages en béton armé. Dans ce but, premièrement, il est proposé un outil d'échantillonnage spatial optimal pour réduire le nombre de points d'auscultation. L'algorithme le plus couramment employé est le recuit simulé spatial (RSS). Cette procédure est régulièrement utilisée dans des applications géostatistiques, et dans d'autres domaines, mais elle est pour l'instant quasiment inexploitée pour des structures de génie civil. Dans le travail de thèse, une optimisation de la méthode d'optimisation de l'échantillonnage spatial (MOES) originale inspirée du RSS et fondée sur la corrélation spatiale a été développée et testée dans le cas d'essais sur site avec deux fonctions objectifs complémentaires : l'erreur de prédiction moyenne et l'erreur sur l'estimation de la variabilité. Cette méthode est décomposée en trois parties. Tout d'abord, la corrélation spatiale des mesures ND est modélisée par un variogramme. Ensuite, la relation entre le nombre de mesures organisées dans une grille régulière et la fonction objectif est déterminée en utilisant une méthode d'interpolation spatiale appelée krigeage. Enfin, on utilise l'algorithme MOES pour minimiser la fonction objectif en changeant les positions d'un nombre réduit de mesures ND et pour obtenir à la fin une grille irrégulière optimale. Des essais destructifs (ED) sont nécessaires pour corroborer les informations obtenues par les mesures ND. En raison du coût ainsi que des dégâts possibles sur la structure, un plan d'échantillonnage optimal afin de prélever un nombre limité de carottes est important. Pour ce faire, une procédure utilisant la fusion des données fondée sur la théorie des possibilités et développée antérieurement, permet d'estimer les propriétés du béton à partir des ND. Par le biais d'un recalage nécessitant des ED réalisés sur carottes, elle est étalonnée. En sachant qu'il y a une incertitude sur le résultat des ED réalisés sur les carottes, il est proposé de prendre en compte cette incertitude et de la propager au travers du recalage sur les résultats des données fusionnées. En propageant ces incertitudes, on obtient des valeurs fusionnées moyennes par point avec un écart-type. On peut donc proposer une méthodologie de positionnement et de minimisation du nombre des carottes nécessaire pour ausculter une structure par deux méthodes : la première, en utilisant le MOES pour les résultats des propriétés sortis de la fusion dans chaque point de mesure et la seconde par la minimisation de l'écart-type moyen sur la totalité des points fusionnés, obtenu après la propagation des incertitudes des ED. Pour finir, afin de proposer une alternative à la théorie des possibilités, les réseaux de neurones sont également testés comme méthodes alternatives pour leur pertinence et leur simplicité d'utilisation. / Non-destructive testing methods (NDT) are essential for estimating concrete properties (mechanical or physical) and their spatial variability. They also constitute an useful tool to reduce the budget auscultation of a structure. The proposed approach is included in an ANR project (EvaDéOS) whose objective is to optimize the monitoring of civil engineering structures by implementing preventive maintenance to reduce diagnosis costs. In this thesis, the objective was to characterize at best a peculiar property of concrete (e.g. mechanical strength, porosity, degree of saturation, etc.), with technical ND sensitive to the same properties. For this aim, it is imperative to develop objective tools that allow to rationalize a test campaign on reinforced concrete structures. For this purpose, first, it is proposed an optimal spatial sampling tool to reduce the number of auscultation points. The most commonly used algorithm is the spatial simulated annealing (SSA). This procedure is regularly used in geostatistical applications, and in other areas, but yet almost unexploited for civil engineering structures. In the thesis work, an original optimizing spatial sampling method (OSSM) inspired in the SSA and based on the spatial correlation was developed and tested in the case of on-site auscultation with two complementary fitness functions: mean prediction error and the error on the estimation of the global variability. This method is divided into three parts. First, the spatial correlation of ND measurements is modeled by a variogram. Then, the relationship between the number of measurements organized in a regular grid and the objective function is determined using a spatial interpolation method called kriging. Finally, the OSSM algorithm is used to minimize the objective function by changing the positions of a smaller number of ND measurements and for obtaining at the end an optimal irregular grid. Destructive testing (DT) are needed to corroborate the information obtained by the ND measurements. Because of the cost and possible damage to the structure, an optimal sampling plan to collect a limited number of cores is important. For this aim, a procedure using data fusion based on the theory of possibilities and previously developed is used to estimate the properties of concrete from the ND. Through a readjustment bias requiring DTs performed on carrots, it is calibrated. Knowing that there is uncertainty about the results of DTs performed on carrots, it is proposed to take into account this uncertainty and propagate it through the calibration on the results of the fused data. By propagating this uncertainty, it is obtained mean fused values with a standard deviation. One can thus provide a methodology for positioning and minimizing the number of cores required to auscultate a structure by two methods: first, using the OSSM for the results of fused properties values in each measuring point and the second by the minimization of the average standard deviation over all of the fused points obtained after the propagation of DTs uncertainties. Finally, in order to propose an alternative to the possibility theory, neural networks are also tested as alternative methods for their relevance and usability.

Identiferoai:union.ndltd.org:theses.fr/2015TOU30177
Date04 December 2015
CreatorsGomez-Cardenas, Carolina
ContributorsToulouse 3, Balayssac, Jean-Paul, Sbartaï, Zoubir Mehdi, Garnier, Vincent
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0028 seconds