Spelling suggestions: "subject:"réseau dde neurones"" "subject:"réseau dee neurones""
1 |
Management and sustainability of urban drainage systems within smart cities / Gestion et durabilité des réseaux d’assainissement dans le cadre des villes intelligentesAbou Rjeily, Yves 20 October 2016 (has links)
Ce travail présente le Contrôle en Temps Réel (CTR) des Réseaux d’Assainissement (RA) dans le cadre des villes intelligentes. Le CTR nécessite de comprendre le fonctionnement du RA et d'effectuer des simulations sur des évènements mesurés, prévus et synthétiques. Par conséquent, un système de Surveillance en Temps Réel (STR) a été installé sur le site expérimental, et combinée à un modèle de simulation. Une méthode d'auto-calage des modèles hydrauliques et un système de prévision des conditions aux limites, ont été développés. Visant à protéger les citoyens et d'atténuer les conséquences des inondations, le CTR est composé d'un système de prévision des inondations suivi d'une gestion dynamique. Le concept et les méthodes proposés ont été appliqués sur le campus de l'Université de Lille 1, au sein du projet SunRise. STR a été trouvé très utile pour comprendre le fonctionnement du RA et pour le calage du modèle de simulation. L'Algorithme Génétique suivi par Pattern Search ont formé une procédure d'auto-calage efficace. NARX Neural Network a été développé et validé pour la prévision des conditions aux limites. Une fois l’opération du RA est analysée, le CTR a été développé. NARX Neural Network a été trouvé capable de prévoir les inondations. Une gestion dynamique pour augmenter la capacité de rétention du réservoir, a été étudiée sur la base du calcul de la variation temporaire de l’ouverture d’une vanne, et les résultats ont été satisfaisants en utilisant l'Algorithme Génétique et l’Algorithme des Abeilles, comme méthodes d'optimisation. Une gestion qualitative a également été examinée et testée pour vérifier son potentiel dans la réduction des volumes d'inondation. / This work presents the Real Time Control (RTC) of Urban Drainage Systems (UDS) within smart cities. RTC requires to understand the UDS operation and to perform simulations on measured, forecasted and synthetic events. Therefore, a Real Time Monitoring system (RTM) was implemented on the experimental site, and combined to a simulation model. A model auto-calibration process and hydraulic boundary conditions forecast system were developed, in order to simulate the hydrologic-hydraulic response. Aiming to protect the citizens and mitigate flooding consequences, the RTC was composed of a flooding forecast system followed by a dynamic management strategy. The proposed concept and methodologies were applied and evaluated on the Lille 1 University Campus, within the SunRise project. RTM was found very helpful in understanding the system operation and calibrating the simulation model. Genetic Algorithm followed by Pattern Search formed an effective auto-calibration procedure for the simulation model. NARX Neural Network was developed and validated for forecasting hydraulic boundary conditions. Once understanding the UDS operations, the RTC was developed. NARX Neural Network was found capable to forecast flooding events. A dynamic management for increasing a tank retention capacity, was studied based on calculating a Valve State Schedule, and results were satisfying by using Genetic Algorithm and a modified form of Artificial Bee Colony, as optimization methods. A qualitative management was also proposed and tested for verifying its potential in reducing flooding volumes.
|
2 |
Discrimination des quarks et des gluons dans les événements à quatre jetsBeauchemin, Pierre-Hugues January 2000 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
3 |
Parallélisation automatique de programmes scientifiques pour systèmes distribuésOuellet, Félix-Antoine January 2016 (has links)
Avec l’avènement des processeurs multi-coeurs comme architecture standard pour
ordinateurs de tout acabit, de nouveaux défis s’offrent aux programmeurs voulant
mettre à profit toute cette nouvelle puissance de calcul qui leur est offerte. Malheureusement, la programmation parallèle, autant sur systèmes à mémoire partagée que sur systèmes à mémoire distribuée, demeure un défi de taille pour les développeurs de logiciels. Une solution intéressante à ce problème serait de rendre disponible un outil permettant d’automatiser le processus de parallélisation de programmes. C’est dans cette optique que s’inscrit le présent mémoire. Après deux essais infructueux, mais ayant permis d’explorer le domaine de la parallélisation automatique dirigée par le compilateur, l’outil Clang-MPI a été conçu pour répondre au besoin énoncé. Ainsi, cet outil prend en charge la parallélisation de programmes originellement séquentiels dans le but de produire des programmes visant les systèmes distribués. Son bon fonctionnement a été évalué en faisant appel aux bancs d’essai offerts par la suite Polybench et ses limites ont été explorées par une tentative de parallélisation automatique du processus d’entraînement d’un réseau de neurones.
|
4 |
Estimation de l'humidité du sol à l'aide d'images RADARSAT-2 et de réseaux de neurones : application aux bassins versants Trent et Severn, OntarioDesbiens, Guillaume January 2017 (has links)
L’humidité du sol joue un rôle important dans le partitionnement de l’eau entre l’infiltration et le ruissellement de surface, qui influence directement les débits en rivière et les niveaux des réservoirs. La connaissance de la distribution spatiale de l’humidité du sol permet donc d’optimiser les différents usages de la ressource en eau en périodes sèches et d’aider la prévision et la gestion d’inondations lors de fortes pluies. La grande variabilité spatiale de l’humidité du sol rend toutefois difficile l’utilisation de capteurs in situ pour en faire le suivi sur de grands territoires tels que les bassins versants. La télédétection peut apporter une valeur ajoutée de par son potentiel pour estimer l’humidité du sol à l’échelle du bassin versant.
Le présent projet porte sur l’estimation de l’humidité du sol dans les bassins versants Trent et Severn en Ontario qui possèdent une superficie combinée de 18 360 km². L’approche adoptée est basée sur les réseaux de neurones artificiels (RNA). Deux approches ont été évaluées. La première, l’approche polarisation simple et double utilise uniquement des données radar acquises en polarisation HH ou HV. La seconde approche, soit l’approche polarimétrique, utilise des données en polarisation HH, HV et VV en plus de paramètres polarimétriques. Au total, 37 images RADARSAT-2 ont été acquises en différentes polarisations et résolutions spatiales entre les mois de mai 2012 et août 2013. En plus des coefficients de rétrodiffusion radar, des données de pente, de texture du sol et de végétation ainsi que des paramètres obtenus suite à une décomposition polarimétrique de la cible ont été utilisés comme intrants aux RNA. Des cartes d’humidité du sol moyenne et d’incertitude, représentant, dans l’ordre, la moyenne et l’écart-type des estimations faites par les 30 RNA sélectionnés, ont été produites. Les performances et les cartes obtenues ont été analysées afin de déterminer l’approche la plus avantageuse pour cartographier l’humidité du sol à l’échelle du bassin versant.
Ce projet de recherche a illustré le potentiel, mais aussi les enjeux, liés à l’estimation de l’humidité du sol à l’échelle du bassin. Il a été démontré que, dans un contexte opérationnel, l’approche polarisation simple et double est la plus avantageuse. Les cartes d’humidité produites avec l’approche polarimétrique, plus coûteuses, n’ont pas montré d’améliorations statistiquement significatives par rapport à l’approche polarisation simple et double. De tous les RNA testés, celui offrant la meilleure performance utilise l’angle d’incidence et les coefficients de rétrodiffusion radar HH et HV comme données d’entraînement. Il a aussi été démontré que l’incertitude sur l’estimation de l’humidité du sol est étroitement liée aux données d’entraînement. Le recours à des variables statiques dans le temps, comme la texture du sol, a affecté négativement et de manière importante les cartes d’humidité du sol, et ce, malgré de bonnes performances selon des critères statistiques comme le coefficient de Pearson et l’erreur quadratique moyenne. L’analyse visuelle des cartes d’humidité du sol demeure donc un moyen privilégié pour évaluer la performance des RNA.
Des pistes de recherche sont suggérées en vue d’améliorer la performance des RNA. Une première avenue serait le recours à une plus grande quantité de données pour leur entraînement, qui pourraient être générées à partir de modèles de rétrodiffusion à base physique. On pourrait également corriger les coefficients de rétrodiffusion pour diminuer l’influence de la végétation sur le signal rétrodiffusé avant l’entraînement des réseaux.
|
5 |
Composition automatique de musique à l'aide de réseaux de neurones récurrents et de la structure métriqueLapalme, Jasmin January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
6 |
Réduction des effets des non-linéarités dans une modulation multiporteuse à l'aire de réseaux de neuronesTertois, Sylvain 12 December 2003 (has links) (PDF)
Ce mémoire présente les travaux effectués au sein de l'équipe ETSN de Supélec, campus de Rennes, sur la réduction des effets des non linéarités dans une modulation OFDM, à l'aide de réseaux de neurones.<br />Tout d'abord, le mémoire commence par une introduction aux communications numériques et en particulier à la modulation OFDM. Aujourd'hui, plusieurs standards reposent sur cette technique de transmission, en particulier en raison de la simplicité de l'égalisation du canal, et donc la possibilité de transmettre avec plus d'efficacité des données sur des canaux multitrajets. Cependant le signal OFDM temporel est particulièrement sensible aux non-linéarités présentes dans l'amplificateur d'émission et diverses techniques sont étudiées pour diminuer ces effets.<br />Ensuite, les réseaux de neurones sont présentés, ainsi que leur utilisation dans le domaine de l'approximation de fonctions. Après avoir décrit les deux modèles de réseaux de neurones les plus courants, les réseaux d'ordre supérieur, tels que le RPN, sont introduits. Les techniques d'apprentissage de ces différentes architectures de réseaux de neurones sont également décrites.<br />Dans les différents correcteurs étudiés dans cette thèse, le réseau de neurones est placé dans le récepteur, après l'égalisation de canal. Son objectif est de corriger le signal reçu afin de compenser les effets des non-linéarités. Dans un premier temps le réseau de neurones est placé dans le domaine fréquentiel. Dans un système OFDM à 4 porteuses avec une modulation MAQ16, un amplificateur de type SSPA, un recul de 0 dB et pour un taux d'erreur binaire de 10-2, le correcteur avec un réseau RPN apporte un gain de 1,5 dB de rapport signal sur bruit. Cependant des difficultés apparaissent durant la phase d'apprentissage du réseau de neurones avec un nombre de porteuses supérieur.<br />Pour palier ce défaut, les réseaux de neurones décrits précédemment sont simplifiés en étant placés dans le domaine temporel. Ce système est plus proche des solutions déjà proposées pour la compensation des non-linéarités dans une modulation monoporteuse, avec toutefois des différences au niveau de l'égalisation du canal et de la nature de la fonction que doit accomplir le réseau de neurones. Un correcteur basé sur un réseau RPN a montré de très bonnes performances, même en augmentant le nombre de porteuses. Un gain de 8 dB a été mesuré pour un taux d'erreur binaire de 10-2 dans un système OFDM à 48 porteuses, une modulation MAQ16 et un amplificateur de type SSPA avec un recul de 0 dB. Le système présenté permet donc dans ces conditions de diviser la puissance de l'amplificateur, et donc sa consommation d'énergie, par un facteur supérieur à 4 tout en conservant la même qualité de transmission.<br />Le correcteur à RPN dans le domaine temporel est ensuite simulé sur un canal multitrajet, afin de vérifier que la compensation reste efficace dans le cas d'un canal sévère. Enfin les deux approches proposées (fréquentielle et temporelle) sont comparées, au niveau des performances obtenues et de la puissance de calcul nécessaire dans le récepteur. Une comparaison avec une autre approche proposée dans la littérature est également présentée. Le correcteur temporel basé sur un RPN est bien moins complexe que le système cité, au détriment d'une légère dégradation des performances.<br />Ce mémoire se conclut par quelques perspectives de recherche pouvant prolonger les travaux accomplis durant cette thèse.
|
7 |
Implémentation matérielle d'un réseau de neurones à décharges pour synchronisation rapide / Hardware implementation of a spiking neural network for fast synchronizationCaron, Louis-Charles January 2011 (has links)
In this master thesis, we present two different hardware implementations of the Oscillatory Dynamic Link Matcher (ODLM). The ODLM is an algorithm which uses the synchronization in a network of spiking neurons to realize different signal processing tasks. The main objective of this work is to identify the key design choices leading to the efficient implementation of an embedded version of the ODLM. The resulting systems have been tested with image segmentation and image matching tasks. The first system is bit-slice and time-driven. The state of the whole network is updated at regular time intervals. The system uses a bit-slice architecture with a large number of processing elements. Each processing element, or slice, implements one neuron of the network and takes the form of a column on the hardware. The columns are placed side by side and they are locally connected to their 2 neighbors. This local hardware connection scheme makes the system scalable, which means that columns can be easily added to increase the capacity of the system. Each column consists of a weight vector, a synapse model unit and a membrane model unit. The system can implement any network topology, making it very flexible. The function governing the time evolution of the neurons' membrane potential is approximated by a piece-wise linear function to reduce the amount of logical resources required. With this system, a fully-connected network of 648 neurons can be implemented on a Virtex-5 Xilinx XC5VSX5OT FPGA clocked at 100 MHz. The system is designed to process simultaneous spikes in parallel, reaching a maximum processing speed of 6 Mspikes/s. It can segment a 23×23 pixel image in 2 seconds and match two pre-segmented 90×30 pixel images in 550 ms. The second system is event-driven. A single processing element sequentially processes the spikes. This processing element is a 5-stage pipeline which can process an average of 1 synapse per 7 clock cycles. The synaptic weights are not stored in memory in this system, they are computed on-the-fly as spikes are processed. The topology of the network is also resolved during operation, and the system supports various regular topologies like 8-neighbor and fully-connected. The membrane potential time evolution function is computed with high precision using a look-up table. On the Virtex-5 FPGA, a network of 65 536 neurons can be implemented and a 406×158 pixel image can be segmented in 200 ms. The FPGA can be clocked at 100 MHz. Most of the design choices made for the second system are well adapted to the hardware implementation of the ODLM. In the original ODLM, the weight values do not change over time and usually depend on a single variable. It is therefore beneficial to compute the weights on the fly rather than saving them in a huge memory bank. The event-driven approach is a very efficient strategy. It reduces the amount of computations required to run the network and the amount of data moved in and out of memory. Finally, the precise computation of the neurons' membrane potential increases the convergence speed of the network.
|
8 |
Étude numérique et expérimentale de coulis de glace à base de propylène- ou d’éthylène-glycolTrabelsi, Senda January 2017 (has links)
Les coulis de glace sont des réfrigérants secondaires considérés comme propres. Ils sont notamment utilisés dans la climatisation, la conservation d’aliments ou certaines applications médicales. Ils se composent de particules de glace et d'un mélange d'eau liquide et d'un additif (ici le propylène-glycol ou l’éthylène-glycol) utilisé pour abaisser le point de congélation de l'eau. Les caractéristiques rhéologiques des coulis de glace ont été mesurées à l'aide d’un rhéomètre de type Discovery HR2 équipé d'une géométrie de type "vane". On considère trois concentrations initiales de soluté (5%, 14% et 24%) pour les deux additifs et les fractions massiques de glace varient entre 5% et 65%. Les résultats expérimentaux révèlent que les coulis de glace sont généralement des fluides non Newtoniens présentant un comportement rhéofluidifiant ou rhéoépaississant en fonction des conditions expérimentales. Les indices d’écoulement et de consistance impliqués dans le modèle de Herschel-Bulkley ont été évalués selon la méthode des moindres carrés. Les résultats sont finalement validés à partir d’une base de données expérimentales issues de la littérature et les prédictions d'un modèle de réseau de neurones artificiels.
|
9 |
Treillis de Galois et réseaux de neurones : une approche constructive d'architecture des réseaux de neurones / Concepts lattice and artificial neural network : a constructive approach of the neural network architectureTsopze, Norbert 28 December 2010 (has links)
Les réseaux de neurones artificiels connaissent des succès dans plusieurs domaines. Maisles utilisateurs des réseaux de neurones sont souvent confrontés aux problèmes de définitionde son architecture et d’interprétabilité de ses résultats. Plusieurs travaux ont essayé d’apporterune solution à ces problèmes. Pour les problèmes d’architecture, certains auteurs proposentde déduire cette architecture à partir d’un ensemble de connaissances décrivant le domaine duproblème et d’autres proposent d’ajouter de manière incrémentale les neurones à un réseauayant une taille initiale minimale. Les solutions proposées pour le problème d’interprétabilitédes résultats consistent à extraire un ensemble de règles décrivant le fonctionnement du réseau.Cette thèse contribue à la résolution de ces deux problèmes. Nous nous limitons à l’utilisationdes réseaux de neurones dans la résolution des problèmes de classification.Nous présentons dans cette thèse un état de l’art des méthodes existantes de recherche d’architecturede réseaux de neurones : une étude théorique et expérimentale est aussi faite. Decette étude, nous observons comme limites de ces méthodes la disponibilité absolue des connaissancespour construire un réseau interprétable et la construction des réseaux difficiles à interpréteren absence de connaissances. En alternative, nous proposons une méthode appelée CLANN(Concept Lattice-based Artificial Neural network) basée les treillis de Galois qui construit undemi-treillis à partir des données et déduire de ce demi-treillis l’architacture du réseau. CLANNétant limitée à la résolution des problèmes à deux classes, nous proposons MCLANN permettantd’étendre cette méthodes de recherche d’architecture des réseaux de neurones aux problèmes àplusieurs classes.Nous proposons aussi une méthode appelée ’Approche des MaxSubsets’ pour l’extractiondes règles à partir d’un réseau de neurones. La particularité de cette méthode est la possibilitéd’extraire les deux formats de règles (’si alors’ et ’m parmi N’) à partir d’une structure quenous construisons. Nous proposons aussi une façon d’expliquer le résultat calculé par le réseauconstruit par la méthode MCLANN au sujet d’un exemple. / The artificial neural networks are successfully applied in many applications. But theusers are confronted with two problems : defining the architecture of the neural network able tosolve their problems and interpreting the network result. Many research works propose some solutionsabout these problems : to find out the architecture of the network, some authors proposeto use the problem domain theory and deduct the network architecture and some others proposeto dynamically add neurons in the existing networks until satisfaction. For the interpretabilityproblem, solutions consist to extract rules which describe the network behaviour after training.The contributions of this thesis concern these problems. The thesis are limited to the use of theartificial neural networks in solving the classification problem.In this thesis, we present a state of art of the existing methods of finding the neural networkarchitecture : we present a theoritical and experimental study of these methods. From this study,we observe some limits : difficulty to use some method when the knowledges are not available ;and the network is seem as ’black box’ when using other methods. We a new method calledCLANN (Concept Lattice-based Artificial Neural Network) which builds from the training dataa semi concepts lattice and translates this semi lattice into the network architecture. As CLANNis limited to the two classes problems, we propose MCLANN which extends CLANN to manyclasses problems.A new method of rules extraction called ’MaxSubsets Approach’ is also presented in thisthesis. Its particularity is the possibility of extracting the two kind of rules (If then and M-of-N)from an internal structure.We describe how to explain the MCLANN built network result aboutsome inputs.
|
10 |
Développement d'une fonction d'évaluation pour le jeu de goRainy, Jeffrey January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
Page generated in 0.5278 seconds