Spelling suggestions: "subject:"réseau dde neurones"" "subject:"réseau dee neurones""
31 |
Dynamique des graphes de terrain : analyse en temps intrinsèque / Dynamics of complex networks : analysis using intrinsic timeAlbano, Alice 10 October 2014 (has links)
Nous sommes entourés par une multitude de réseaux d'interactions, issus de contextes très différents. Ces réseaux peuvent être modélisés par des graphes, appelés graphes de terrain. Ils possèdent une structure en communautés, c'est-à-dire en groupes de nœuds très liés entre eux, et peu liés avec les autres. Un phénomène que l'on étudie sur les graphes dans de nombreux contextes est la diffusion. La propagation d'une maladie en est un exemple. Ces phénomènes dépendent d'un paramètre important, mais souvent peu étudié : l'échelle de temps selon laquelle on les observe. Selon l'échelle choisie, la dynamique du graphe peut varier de manière très importante.Dans cette thèse, nous proposons d'étudier des processus dynamiques en utilisant une échelle de temps adaptée. Nous considérons une notion de temps relatif, que nous appelons le temps intrinsèque, par opposition au temps "classique", que nous appelons temps extrinsèque. Nous étudions en premier lieu des phénomènes de diffusion selon une échelle de temps intrinsèque, et nous comparons les résultats obtenus avec une échelle extrinsèque. Ceci nous permet de mettre en évidence le fait qu'un même phénomène observé dans deux échelles de temps différentes puisse présenter un comportement très différent. Nous analysons ensuite la pertinence de l'utilisation du temps intrinsèque pour la détection de communautés dynamiques. Les communautés obtenues selon les échelles de temps extrinsèques et intrinsèques nous montrent qu'une échelle intrinsèque permet la détection de communautés beaucoup plus significatives et détaillées que l'échelle extrinsèque. / We are surrounded by a multitude of interaction networks from different contexts. These networks can be modeled as graphs, called complex networks. They have a community structure, i.e. groups of nodes closely related to each other and less connected with the rest of the graph. An other phenomenon studied in complex networks in many contexts is diffusion. The spread of a disease is an example of diffusion. These phenomena are dynamic and depend on an important parameter, which is often little studied: the time scale in which they are observed. According to the chosen scale, the graph dynamics can vary significantly. In this thesis, we propose to study dynamic processes using a suitable time scale. We consider a notion of relative time which we call intrinsic time, opposed to "traditional" time, which we call extrinsic time. We first study diffusion phenomena using intrinsic time, and we compare our results with an extrinsic time scale. This allows us to highlight the fact that the same phenomenon observed at two different time scales can have a very different behavior. We then analyze the relevance of the use of intrinsic time scale for detecting dynamic communities. Comparing communities obtained according extrinsic and intrinsic scales shows that the intrinsic time scale allows a more significant detection than extrinsic time scale.
|
32 |
Simulation d'un réseau de neurones à l'aide de transistors SETTrinh, Franck Ky January 2010 (has links)
Ce mémoire est le résultat d'une recherche purement exploratoire concernant la définition d'une application de réseaux de neurones à base de transistors monoélectroniques (Single-Electron Transistor, SET). Il dresse un portait de l'état de l'art actuel, et met de l'avant la possibilité d'associer les SET avec la technologie actuelle (Field Electron Transistor, FET). La raison de cette association est que les SET peuvent être perçus comme un moyen de changement de paradigme, c'est-à-dire remplacer une fonction CMOS occupant une grande place par un dispositif alternatif présentant de meilleures performances ou équivalentes. Par l'intermédiaire de leurs caractéristiques électriques peu ordinaires au synonyme de"l'effet de blocage de Coulomb", les SET ont le potentiel d'être exploités intelligemment afin de tirer profit sur la consommation énergétique essentiellement. Cette problématique est présentée comme une des propositions alternatives"Beyond CMOS" aux termes de la diminution géométrique des transistors FET à la lumière de l'ITRS. Cette recherche propose d'exposer des circuits électroniques de technologie MOS complétés à l'aide de SET (circuits hybrides) et de montrer que l'on est capable de les remplacer ou les compléter (partiellement) dans des architectures à réseau de neurones. Pour cela, des simulations sous logiciel Cadence Environnement permettront de valider le comportement des circuits sur plusieurs critères tels que la vitesse de réponse et la consommation énergétique, par exemple. En résultat, seront proposées deux architectures à réseaux de neurones de fonctions différentes : une architecture Winner-Take-All et un générateur de spikes en tension. La première étant inspirée d'une publication provenant de GUIMARAES et al., veut démontrer qu'à partir d'une architecture SET existante, il est envisageable de se l'approprier et de l'appliquer aux paramètres des SET du CRN[indice supérieur 2] augmentant donc nos chances de pouvoir les concevoir dans notre groupe de recherche. Le second axe est la simulation d'un circuit capable de générer des signaux à spikes sans perte d'information, ce qui requerrait un nombre considérable de transistors FET sans l'utilisation de SET, mettant donc en valeur la réduction de composants.
|
33 |
Efficacité de détection en tomographie d'émission par positrons: une approche par intelligence artificielleMichaud, Jean-Baptiste January 2014 (has links)
En Tomographie d'Émission par Positrons (TEP), la course à la résolution spatiale nécessite des détecteurs de plus en plus petits, produisant plus de diffusion Compton avec un impact négatif sur l’efficacité de détection du scanner. Plusieurs phénomènes physiques liés à cette diffusion Compton entachent tout traitement des coïncidences multiples d'une erreur difficile à borner et à compenser, tandis que le nombre élevé de combinaisons de détecteurs complexifie exponentiellement le problème. Cette thèse évalue si les réseaux de neurones constituent une alternative aux solutions existantes, problématiques parce que statistiquement incertaines ou complexes à mettre en œuvre. La thèse réalise une preuve de concept pour traiter les coïncidences triples et les inclure dans le processus de reconstruction, augmentant l'efficacité avec un minimum d'impact sur la qualité des images. L'atteinte des objectifs est validée via différents critères de performance comme le gain d'efficacité, la qualité de l'image et le taux de succès du calcul de la ligne de réponse (LOR), mesurés en priorité sur des données réelles. Des études paramétriques montrent le comportement général de la solution : un réseau entraîné avec une source générique démontre pour le taux d'identification de la LOR une bonne indépendance à la résolution en énergie ainsi qu'à la géométrie des détecteurs, du scanner et de la source, pourvu que l'on ait prétraité au maximum les données pour simplifier la tâche du réseau. Cette indépendance, qui n'existe en général pas dans les solutions existantes, laisse présager d'un meilleur potentiel de généralisation à d'autres scanners. Pour les données réelles du scanner LabPET[indice supérieur TM], la méthode atteint un gain d'efficacité aux alentours de 50%, présente une dégradation de résolution acceptable et réussit à recouvrer le contraste de manière similaire aux images de référence, en plus de fonctionner en temps réel. Enfin, plusieurs améliorations sont anticipées.
|
34 |
Représentation adaptative d'images de télédétection à très haute résolution spatiale une nouvelle approche hybride (la décomposition pyramidale avec des réseaux de neurones)Cherkashyn, Valeriy January 2011 (has links)
Résumé: De nos jours l’observation de la terre à l’aide d’images satellitaires de très haute résolution spatiale (Ikonos, Quickbird, World View-2) donne de nombreuses possibilités pour gérer de l’information à l’échelle mondiale. Les technologies actuelles d’acquisition d’information sont à l’origine de l’augmentation importante du volume des données. L’objectif général de cette thèse consiste à développer une nouvelle méthode hybride de représentation d’image numérique de très haute résolution spatiale qui améliore la qualité visuelle d’images compressée avec un haut niveau de compression (100 fois et plus). La nouvelle méthode hybride exploite la transformation pyramidale inverse d’image numérique en utilisant des réseaux de neurones artificiels. Elle combine le traitement spatial et la transformation abstraite de l’image. L’emploi de l’approche de la transformation pyramidale inverse a démontré l’efficacité du traitement de l’information à une ou à des échelles spécifiques, sans interférer ou ajouter un temps de calcul inutile. Cette approche est essentielle pour réaliser une transformation progressive d’image. Les résultats montrent une amélioration du rapport signal pur bruit de 4 dB pour chaque couche additionnelle de la transformation progressive.
Nous avons réussi à garder une qualité visuelle d’images compressées comparable, jusqu’au niveau de la compression de 107 fois. De plus, pour le niveau de la compression de 274 fois, nous avons obtenu une amélioration de la qualité visuelle en comparaison des méthodes de compression courantes (JPEG, JPEG2000). Les résultats du travail confirment l’hypothèse que les images de télédétection possèdent un haut degré de redondance et que l’utilisation d’un réseau de neurones est un bon moyen pour trouver l’opérateur efficace du regroupement de pixels. Cette nouvelle méthode de représentation d’images à très haute résolution spatiale permet de réduire le volume des données sans détérioration majeure de la qualité visuelle, comparé aux méthodes existantes. Enfin, nous recommandons de poursuivre l’exploration du domaine des calculs distribués tels que les réseaux des neurones artificiels, considérant l’augmentation de la performance des outils informatiques (nanotechnologies et calculs parallèles). ||
Abstract: Earth observations using very high-resolution satellite imagery, such as from Ikonos, QuickBird or WorldView-2, provide many possibilities for addressing issues on a global scale. However, the acquisition of high-resolution imagery using these technologies also significantly increases the volume of data that must be managed. With the passing of each day, the number of collected satellite images continues to increase. The overall objective of this work is to develop new hybrid methods for numerical data representation that improve the visual quality of compressed satellite visible imagery for compression levels of 100 times and more. Our new method exploits the inverse pyramid transform using artificial neural networks, and thus addresses the trend in the field of remote sensing and image compression towards combining the spatial processing and abstract transformation of an image. Our implementation of the pyramidal inverse transformation demonstrates the effectiveness of information processing for specific levels, without interfering or adding unnecessary computation time. This approach is essential in order to achieve a gradual transformation of an image. The results showed an improvement in the signal to noise ratio of 4dB for each additional layer in the pyramidal image transformation. We managed to keep a similar level of visual quality for the compressed images up to a compression level of 107 times. In addition, for a compression level of 274, we improved the visual quality as compared to standard compression methods (JPEG, JPEG2000). The results of this study confirm the hypothesis that remote sensing images have a high degree of redundancy and that the use of neural networks is a good way to find the effective operator of the pixel combination. This new method for image representation reduces the volume of data without major deterioration in the visual quality of the compressed images, as compared to existing methods. Finally, we recommend further exploration in the field of distributed computing, such as artificial neural networks, considering the rapidly increasing performance of computers in the near future (parallel computing technology and nanotechnology).
|
35 |
Méthodes d'apprentissage pour l'estimation de la pose de la tête dans des images monoculairesBailly, Kévin 09 July 2010 (has links) (PDF)
Cette thèse s'inscrit dans le cadre de PILE, un projet médical d'analyse du regard, des gestes, et des productions vocales d'enfants en bas âge. Dans ce contexte, nous avons conçu et développé des méthodes de détermination de l'orientation de la tête, pierre angulaire des systèmes d'estimation de la direction du regard. D'un point de vue méthodologique, nous avons proposé BISAR (Boosted Input Selection Algorithm for Regression), une méthode de sélection de caractéristiques adaptée aux problèmes de régression. Elle consiste à sélectionner itérativement les entrées d'un réseau de neurones incrémental. Chaque entrée est associée à un descripteur sélectionné à l'aide d'un critère original qui mesure la dépendance fonctionnelle entre un descripteur et les valeurs à prédire. La complémentarité des descripteurs est assurée par un processus de boosting qui modifie, à chaque itération, la distribution des poids associés aux exemples d'apprentissage. Cet algorithme a été validé expérimentalement au travers de deux méthodes d'estimation de la pose de la tête. La première approche apprend directement la relation entre l'apparence d'un visage et sa pose. La seconde aligne un modèle de visage dans une image, puis estime géométriquement l'orientation de ce modèle. Le processus d'alignement repose sur une fonction de coût qui évalue la qualité de l'alignement. Cette fonction est apprise par BISAR à partir d'exemples de modèles plus ou moins bien alignés. Les évaluations de ces méthodes ont donné des résultats équivalents ou supérieurs aux méthodes de l'état de l'art sur différentes bases présentant de fortes variations de pose, d'identité, d'illumination et de conditions de prise de vues.
|
36 |
Modélisation d'un réseau de neurones humains dans le but de comprendre la dégradation neurale lors du vieillissementAllard, Rémy January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
37 |
Contribution to engine-out aircraft trajectory management and control / Contribution à la gestion et au contrôle de trajectoire d’un avion avec panne totale des moteursWu, Hongying 22 April 2013 (has links)
La panne de moteur est une situation critique pour la sécurité du vol. L’objectif de cette thèse est d’améliorer la gestion de la trajectoire avion d’urgence dans le cas d’une panne totale de moteur en un certain point de vol alors que l’avion a déjà pris une certaine vitesse et une certaine altitude après le décollage. Dans cette étude, on considère que la trajectoire de vol plané le long d’un plan vertical peut conduire directement à un lieu atterrissage sûr. Les performances d’un avion de transport sont d’abord analysées, et les lieus atteignables sont établis à partir d’une situation donnée initiale. Une fois une zone de sécurité accessible existe le problème qui est abordée ici est de développer un système de guidage qui permet à l’avion d’effectuer une trajectoire faisable vers la zone d’atterrissage. La programmation dynamique inverse est utilisée pour construire en arrière des ensembles de trajectoires faisables vers conditions finales compatibles avec panne de moteur. Afin d’obtenir un dispositif en ligne pour générer des directives efficaces pour le pilote automatique ou le pilote humain (par un directeur de vol), un réseau de neurones est construit à partir de la base de données générée. Ensuite, les résultats de simulation sont analysés pour validation, et d’autres améliorations de l’approche proposée sont prises en considération. / Engine-out is an undoubted critical situation for flight safety. The objective of this thesis is to improve the management of emergency manoeuvres for transportation aircraft once all engines go out at a given point during the flight. Here we consider the evolution of the gliding aircraft along a vertical plane possibly leading directly to a safe landing place. The gliding qualities of standard transportation aircraft are first analyzed and reachable areas from given initial situations are established. Once a safe reachable area exists the problem which is tackled here is to develop design principles for a guidance system which makes the aircraft perform a feasible glide trajectory towards such landing area. Reverse dynamic programming is used to build backwards sets of feasible trajectories leading to final conditions compatible with engine-out landing. To get an on-line device to produce efficient directives for the autopilot or the human pilot (through a flight director), a neural network is built from the generated database. Then simulation results are analyzed for validation and further improvements of the proposed approach are considered
|
38 |
Combining neural-based approaches and linguistic knowledge for text recognition in multimedia documents / Combinaison d'approches neuronales et de connaissances linguistiques pour la reconnaissance de texte dans les documents multimédiasElagouni, Khaoula 28 May 2013 (has links)
Les travaux de cette thèse portent sur la reconnaissance des indices textuels dans les images et les vidéos. Dans ce cadre, nous avons conçu des prototypes d'OCR (optical character recognition) capables de reconnaître tant des textes incrustés que des textes de scène acquis n'importe où au sein d'images ou de vidéos. Nous nous sommes intéressée à la définition d'approches robustes à la variabilité des textes et aux conditions d'acquisition. Plus précisément, nous avons proposé deux types de méthodes dédiées à la reconnaissance de texte : - une approche fondée sur une segmentation en caractères qui recherche des séparations non linéaires entre les caractères adaptées à la morphologie de ces derniers ; - deux approches se passant de la segmentation en intégrant un processus de scanning multi-échelles ; la première utilise un modèle de graphe pour reconnaître les textes tandis que la seconde intègre un modèle connexionniste récurrent spécifiquement développé pour gérer les contraintes spatiales entre les caractères.Outre les originalités de chacune des approches, deux contributions supplémentaires de ce travail résident dans la définition d'une reconnaissance de caractères fondée sur un modèle de classification neuronale et l'intégration de certaines connaissances linguistiques permettant de tirer profit du contexte lexical. Les différentes méthodes conçues ont été évaluées sur deux bases de documents : une base de textes incrustés dans des vidéos et une base publique de textes de scène. Les expérimentations ont permis de montrer la robustesse des approches et de comparer leurs performances à celles de l'état de l'art, mettant en évidence leurs avantages et leurs limites. / This thesis focuses on the recognition of textual clues in images and videos. In this context, OCR (optical character recognition) systems, able to recognize caption texts as well as natural scene texts captured anywhere in the environment have been designed. Novel approaches, robust to text variability (differentfonts, colors, sizes, etc.) and acquisition conditions (complex background, non uniform lighting, low resolution, etc.) have been proposed. In particular, two kinds of methods dedicated to text recognition are provided:- A segmentation-based approach that computes nonlinear separations between characters well adapted to the localmorphology of images;- Two segmentation-free approaches that integrate a multi-scale scanning scheme. The first one relies on a graph model, while the second one uses a particular connectionist recurrent model able to handle spatial constraints between characters.In addition to the originalities of each approach, two extra contributions of this work lie in the design of a character recognition method based on a neural classification model and the incorporation of some linguistic knowledge that enables to take into account the lexical context.The proposed OCR systems were tested and evaluated on two datasets: a caption texts video dataset and a natural scene texts dataset (namely the public database ICDAR 2003). Experiments have demonstrated the efficiency of our approaches and have permitted to compare their performances to those of state-of-the-art methods, highlighting their advantages and limits.
|
39 |
Simulation du mouvement pulmonaire personnalisé par réseau de neurones artificiels pour la radiothérapie externe / Personalizes lung motion simulation fore external radiotherapy using an artificial neural networkLaurent, Rémy 21 September 2011 (has links)
Le développement de nouvelles techniques en radiothérapie externe ouvre de nouvelles voies dans la recherche de gain de précision dans la distribution de dose en passant notamment par la connaissance du mouvement pulmonaire. La simulation numérique NEMOSIS (Neural Network Motion Simulation System) basée sur les Réseaux de Neurones Artificiels (RNA) développée ici permet, en plus de déterminer de façon personnalisée le mouvement, de réduire les doses nécessaires initiales pour le déterminer. La première partie présente les techniques actuelles de traitement, les mouvements pulmonaires ainsi que les méthodes de simulation ou d’estimation du mouvement déjà existantes. La seconde partie décrit le réseau de neurones artificiels utilisé et les étapes de son paramétrage pour répondre à la problématique posée. Une évaluation précise de notre approche a été réalisée sur des données originales. Les résultats obtenus sont comparés avec une méthode d’estimation du mouvement. Les temps de calcul extrêmement faibles, de l’ordre de 7 millisecondes pour générer une phase respiratoire, ont permis d’envisager son utilisation en routine clinique. Des modifications sont apportées à NEMOSIS afin de répondre aux critères de son utilisation en radiothérapie externe et une étude sur le mouvement de contours tumoraux est effectuée. Ces travaux ont mis en place les bases de la simulation du mouvement pulmonaire par RNA et ont validé cette approche. Son exécution en temps réel couplé à la précision de la prédiction fait de NEMOSIS un outil prometteur dans la simulation du mouvement synchronisé avec la respiration. / The development of new techniques in the field of external radiotherapy opens new ways of gaining accuracy in dose distribution, in particular through the knowledge of individual lung motion. The numeric simulation NEMOSIS (Neural Network Motion Simulation System) we describe is based on artificial neural networks (ANN) and allows, in addition to determining motion in a personalized way, to reduce the necessary initial doses to determine it. In the first part, we will present current treatment options, lung motion as well as existing simulation or estimation methods. The second part describes the artificial neural network used and the steps for defining its parameters. An accurate evaluation of our approach was carried out on original patient data. The obtained results are compared with an existing motion estimated method. The extremely short computing time, in the range of milliseconds for the generation of one respiratory phase, would allow its use in clinical routine. Modifications to NEMOSIS in order to meet the requirements for its use in external radiotherapy are described, and a study of the motion of tumor outlines is carried out. This work lays the basis for lung motion simulation with ANNs and validates our approach. Its real time implementation coupled to its predication accuracy makes NEMOSIS promising tool for the simulation of motion synchronized with breathing.
|
40 |
Du capteur à la sémantique : contribution à la modélisation d'environnement pour la robotique autonome en interaction avec l'humain / From sensor to semantics : contribution to environment modelization for autonomous robotics interacting with humanBreux, Yohan 29 November 2018 (has links)
La robotique autonome est employée avec succès dans des environnements industriels contrôlés, où les instructions suivent des plans d’action prédéterminés.La robotique domestique est le challenge des années à venir et comporte un certain nombre de nouvelles difficultés : il faut passer de l'hypothèse d'un monde fermé borné à un monde ouvert. Un robot ne peut plus compter seulement sur ses données capteurs brutes qui ne font qu'indiquer la présence ou l'absence d'objets. Il lui faut aussi comprendre les relations implicites entre les objets de son environnement ainsi que le sens des tâches qu'on lui assigne. Il devra également pouvoir interagir avec des humains et donc partager leur conceptualisation à travers le langage. En effet, chaque langue est une représentation abstraite et compacte du monde qui relie entre eux une multitude de concepts concrets et purement abstraits. Malheureusement, les observations réelles sont plus complexes que nos représentations sémantiques simplifiées. Elles peuvent donc rentrer en contradiction, prix à payer d'une représentation finie d'un monde "infini". Pour répondre à ces difficultés, nous proposons dans cette thèse une architecture globale combinant différentes modalités de représentation d'environnement. Elle permet d'interpréter une représentation physique en la rattachant aux concepts abstraits exprimés en langage naturel. Le système est à double entrée : les données capteurs vont alimenter la modalité de perception tandis que les données textuelles et les interactions avec l'humain seront reliées à la modalité sémantique. La nouveauté de notre approche se situe dans l'introduction d'une modalité intermédiaire basée sur la notion d'instance (réalisation physique de concepts sémantiques). Cela permet notamment de connecter indirectement et sans contradiction les données perceptuelles aux connaissances en langage naturel.Nous présentons dans ce cadre une méthode originale de création d'ontologie orientée vers la description d'objets physiques. Du côté de la perception, nous analysons certaines propriétés des descripteurs image génériques extraits de couches intermédiaires de réseaux de neurones convolués. En particulier, nous montrons leur adéquation à la représentation d'instances ainsi que leur usage dans l'estimation de transformation de similarité. Nous proposons aussi une méthode de rattachement d'instance à une ontologie, alternative aux méthodes de classification classique dans l'hypothèse d'un monde ouvert. Enfin nous illustrons le fonctionnement global de notre modèle par la description de nos processus de gestion de requête utilisateur. / Autonomous robotics is successfully used in controled industrial environments where instructions follow predetermined implementation plans.Domestic robotics is the challenge of years to come and involve several new problematics : we have to move from a closed bounded world to an open one. A robot can no longer only rely on its raw sensor data as they merely show the absence or presence of things. It should also understand why objects are in its environment as well as the meaning of its tasks. Besides, it has to interact with human beings and therefore has to share their conceptualization through natural language. Indeed, each language is in its own an abstract and compact representation of the world which links up variety of concrete and abstract concepts. However, real observations are more complex than our simplified semantical representation. Thus they can come into conflict : this is the price for a finite representation of an "infinite" world.To address those challenges, we propose in this thesis a global architecture bringing together different modalities of environment representation. It allows to relate a physical representation to abstract concepts expressed in natural language. The inputs of our system are two-fold : sensor data feed the perception modality whereas textual information and human interaction are linked to the semantic modality. The novelty of our approach is in the introduction of an intermediate modality based on instances (physical realization of semantic concepts). Among other things, it allows to connect indirectly and without contradiction perceptual data to knowledge in natural langage.We propose in this context an original method to automatically generate an ontology for the description of physical objects. On the perception side, we investigate some properties of image descriptor extracted from intermediate layers of convolutional neural networks. In particular, we show their relevance for instance representation as well as their use for estimation of similarity transformation. We also propose a method to relate instances to our object-oriented ontology which, in the assumption of an open world, can be seen as an alternative to classical classification methods. Finally, the global flow of our system is illustrated through the description of user request management processes.
|
Page generated in 0.1535 seconds