Return to search

Déformations de métriques Einstein sur des<br />variétés à singularités coniques

Partant d'une cône-variété hyperbolique compacte de dimension n>2, on étudie les déformations de la métrique dans le but d'obtenir des cônes-variétés Einstein. Dans le cas où le lieu singulier est une sous-variété fermée de codimension 2 et que tous les angles coniques sont plus petits que 2pi, on montre qu'il n'existe pas de déformations Einstein infinitésimales non triviales préservant les angles coniques. Ce résultat peut s'interpréter comme une généralisation en dimension supérieure du célèbre théorème de Hodgson et Kerckhoff sur les déformations des cônes-variétés hyperboliques de dimension 3.<br />Si tous les angles coniques sont inférieurs à pi, on donne ensuite une construction qui à chaque variation donnée des angles associe une déformation Einstein infinitésimale correspondante.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00011474
Date06 December 2005
CreatorsMontcouquiol, Grégoire
PublisherUniversité Paul Sabatier - Toulouse III
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0051 seconds